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OPTIMISATION OF FLOW SHOP SCHEDULING PROBLEM: 
SIMULATION SYSTEM VS. EVOLUTIVE SOLVER 
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Abstract: In the Industry 4.0 era the optimisation of production processes become more and more 
important. A wide range of tools are used to improve the performance of production processes and 
related operations of the supply chain including purchasing, distribution and inverse processes. These 
tools have a great impact on the results of design and operation of production processes both 
technology and logistics point of view. Within the frame of this article, the authors are demonstrating 
the optimisation potentials of simulation tools and heuristic solvers (optimisers) through the problem 
of the well-knows permutation flow shop scheduling. They are describing the models and methods 
used in the case of FlexSim simulation systems and the heuristic solver option of Excel Solver. As the 
numerical results show, both the simulation model and the heuristic optimisation approach lead to a 
quasi-optimal solution. 
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1. INTRODUCTION 
 
Scheduling of tasks belongs to a large class of problems, considered in various 
configurations, for which many optimization criteria can be adopted, such as time, cost, 
shortest path, capacity utilisation and others. The topics discussed are still relevant and 
described in the literature [1, 2]. A lot of cited works are focusing only on the problem of 
scheduling of production processes focusing on technology, but in general, this problem 
may concern most logistic processes. The purpose of this work is to compare the solution of 
the problem of scheduling tasks in the simulation model in FlexSim and an evolutive solver 
tool. The optimization criterion is the minimization of the total execution time. The rapid 
development of computer technology and artificial intelligence has enabled the widespread 
use of general-purpose optimizers. As a consequence of the computer simulations, the 
estimated execution time was obtained, with different configurations of task scheduling for 
the process. In a broader context, the presented solution can be used in many fields of 
optimization, including: 

• study of the execution time of any process; 
• optimization of customer service time; 
• examination of the operator's work efficiency; 
• optimization of the order processing with different times of performance of 

individual operations, e.g. order picking for many customers, including transport 
with a complex number of sub-tasks, and others. 

 
Based on this fact, the paper is organized as follows. Section 2 presents a short knowledge 
overview regarding permutation flow-shop scheduling. Section 3 presents the materials and 
methods, while section 4 focuses on the results and conclusions. 
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2. THEORETICAL BACKGROUND 
 
In production and logistics systems, the optimal schedule is determined primarily by two 
basic elements: 

• the order of processing details / tasks and  
• technological route. 

 

 
Figure 1. Structures of flow-shop production systems: flow (F), permutation (PF),  

non-permutation with parallel machines at the station [3] 

The basic flow systems of objects or tasks in the production processes are shown in Figure 
1 and in Figure 2 [3]. Identification of flow systems: 

• F: flow shop (Figure 1), in which all tasks have the same technological route and 
require service at all stations, and each station requires the determination of an 
appropriate sequence of task entry,  

• PF: permutation flow-shop (Figure 1), which has the same assumptions as F with 
an additional requirement, that the order of operation of tasks on all machines is 
the same (consistent with the order of entering tasks into the system),   

• J: job-shop (Figure 2) in which different tasks may have different (in terms of the 
number and order of visiting positions) technological routes,  

• G: general shop, where each task is a single operation, and technological 
dependencies are data described any graph,  

• I: parallel shop, in which each task is a single operation and all operations are 
performed on exactly one of several parallel machines, 

• O: open flow shop, in which all operations for task have to be performed, but the 
technological sequence of operations in the task is not specified. 
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Figure 2. Job-shop manufacturing system example [3] 

If the process route which is determined by the production technology cannot be changed, 
then the only possible form of optimization is the ordering of tasks. Permutation is the 
setting of the elements of a given set in a certain order. The number of permutations 
determines how many ways we can queue the elements of the set. Thus the number of all 
permutations of an n-element set can be written as follows with (1): 

 𝑃𝑛 = 𝑛! (1) 

If the sequence of tasks on individual machines is the same, then this case is called a 
permutation flow problem. The decision variable is the order in which details enter the 
system, according to the difficulty of the written formula (1). For such a flow system with 
a fixed technological route, the difficulty of scheduling tasks will bring for 5 types of 
details 5! = 120 setting options, for 6 types of details 6! = 720 settings options, for 7 types 
of details 7! = 5040 settings, and 8 types of details we already have over 40 thousand 
possibilities to set the order of parts to be processed. 

The solution of this problem is to determine the order of tasks on the first machine, 
because the order of processing on subsequent machines is predetermined by the 
technological route. According to [4], we are looking for a permutation (π) which that will 
minimize the total flow time of all tasks (2). The maximum time for completion of all tasks 
(Cmax) is referred to in the literature as makespan (4). The discussed problem belongs to 
NP-hard problems and approximate algorithms are used to solve it.  

 Φ(𝜋) = max1≤𝑖≤𝑛(𝑓𝑖(𝜋)) (2) 

where 𝑓𝑖(𝜋) is the time to complete the i-th task for the ranking π. 
General described in the literature [5] the flow shop problem with blocking has some 

assumptions. In the system there are M – machines on which to perform J – jobs consisting 
of one or more operations – Oj [6]: 

• collection of machines: M = {M1, M2, M3, ..., Mk , ... Mm}, 
• a set of production jobs: J = {J1, J2, J3, ..., Jj , ..., Jn}, 
• every task Jj ∈ J consists of m operations from the set: Oj={Oj1, Oj2, Oj3... Ojk... 

Ojm}, operation Ojk ∈ Oj corresponds to the processing of the task j on the machine 
k during uninterrupted time pjk > 0 (collection of durations pj operations from the 
set Oj : pj = {pj1, pj2, pj3,..., pjk ,..., pjm}), 

• each machine can perform only one operation at a time, 
• there are no buffers in the system for storing items (tasks), that can move from the 

current machine to the next only when it is free, so the task j after the processing 
of the operation is completed Ojk, cannot leave the machine k, as long as the 
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machine k+1 will not be free, if the machine k+1 is busy the system is locked, 
where: k = 1, 2,…, m – 1, j ∈ J . 

 
A variable decision in this problem is the order in which tasks are performed on machines. 
It is described by a set of m-permutations: π = (π1, π2,..., πi,..., πm). The number of sets of all 
possible permutations for this problem is (n!)m 

. Let П denote the set of all such 
permutations, then such a permutation should be found.  π* ∈  П, that: 

 C𝑚𝑎𝑥(𝜋∗) = min𝜋∈Π�C𝑚𝑎𝑥(𝜋)� (3) 

where: Cmax(π) is the time needed to perform all jobs on machines in the order given by the 
π. Cmax is the deadline for completing all tasks: 

 C𝑚𝑎𝑥 = max1≤𝑖≤𝑛�C𝑗� (4) 

where n is the number of tasks, Cj is the deadline for completing task j. 
Suboptimal methods for task scheduling known in the literature include: S. M. 

Johnson's algorithm, combinatorial methods [7,8], simulation methods, graphoanalytical 
method, Palmer's algorithm [9]. The review of algorithms supporting the planning and 
scheduling of tasks was made by [10-12]. Application of the Palmer's algorithm has been 
described among others in works [8, 13,14]. The colony algorithm is inspired by the 
behaviour of real ants that can be used to solve combinatorial optimization problems. Ant 
behaviour is used to construct graph solutions for flow problems which are then corrected 
by local search algorithms [15]. The performance improvement of production processes 
using simulation is discussed in [16]. 
 
3. MATERIALS AND METHODS 
 
A computational example using the general purpose metaheuristic optimizer OptQuest has 
been implemented in the simulation model. The main engine of this optimizer is based on 
the distributed search methodology (scatter search) combined with a mechanism (tabu 
search). OptQuest Optimizer was developed by F. Glovera, J.P. Kelly'ego i M. Laguna in 
University of Colorado. The first version was developed to optimize the simulation of 
discrete events modelled with Micro Saint 2.0 [17]. Currently this software is an 
optimization engine added to simulation packages such as: Arena, Promodel, Simul8, Simio 
and others. Scatter search is the main and the first optimization technology implemented in 
OptQuest. Over the years, however, many technologies have emerged for both prediction 
and optimization have been added to the optimizer engine. There are several options and 
settings to choose from to change the behaviour of the goal solving process. In subsequent 
versions of the program, new predictive functions were implemented for the purpose of the 
optimization problem being solved. Predictive models in the engine have the dual purpose 
of helping to establish search directions as well as to estimate the proper value of the 
objective function. A more detailed description of the optimizer's operation can be found in 
the literature [18]. 

Our task is to prepare a simulation model to calculate the optimal schedule for 
machining nine details: D={D1 … D9} on eight machines M = {M1, M2, M3, M4, M5, M6, M7, 
M8 }, with a fixed technological route. The number of possible permutations in this case is 
9! For collection of machines the technological route of the items was fixed (Table I) in the 
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next steps from S1 to S9, an additional step S10 with a time of zero is dedicated to the output 
of the flow element from the system and is not relevant to the calculations performed. Table 
I shows that each detail is processed in nine steps of the production process. Every detail 
passes through all machines from M1 to M9. The technological route consists of 9 steps for 
9 details. A process time matrix was also created tij (Table II). 

Table I. 
Technological route for 9 of details 

 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

D1 1 2 3 4 5 6 7 8 9 exit from the system 

D2 1 2 3 4 5 6 7 8 9 exit from the system 

D3 1 2 3 4 5 6 7 8 9 exit from the system 

D4 1 2 3 4 5 6 7 8 9 exit from the system 

D5 1 2 3 4 5 6 7 8 9 exit from the system 

D6 1 2 3 4 5 6 7 8 9 exit from the system 

D7 1 2 3 4 5 6 7 8 9 exit from the system 

D8 1 2 3 4 5 6 7 8 9 exit from the system 

D9 1 2 3 4 5 6 7 8 9 exit from the system 

Table II. 
Process time for each details 

 D1 D2 D3 D4 D5 D6 D7 D8 D9 

M1 2 3 6 5 4 1 2 6 7 

M2 4 5 4 4 5 3 3 5 3 

M3 1 6 3 6 3 4 2 4 4 

M4 6 2 1 3 6 4 3 3 5 

M5 5 1 5 1 2 6 4 2 7 

M6 2 4 5 2 3 4 4 5 2 

M7 7 4 2 2 3 5 5 8 3 

M8 6 5 1 3 2 5 5 7 4 

 
Figure 3 shows a block diagram of a computer model for testing system performance in the 
FlexSim environment. A diagram of the logical connections of the model was developed 
and the input parameters were introduced, i.e. machining times and technological route. 
The total time for completing tasks in the permutation schedule will be calculated. In the 
analyzed case, the order of entry into the system will be changed to minimize the objective 
function. The results obtained from the simulation experiments will be discussed in the 
following sections. 
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Figure 3. An example of a permutation flow system in a simulation model 

The next optimisation approach focuses on the solution of flow-shop scheduling problems 
with the Excel Solver’s evolutive optimiser to validate the results of simulation-based 
scheduling. In the case of this approach the objective function of the solver model is the 
minimisation of the timespan required to perform all operations. The decision variable is 
the optimal sequence of operations, which can be represented by a permutation of 
operations. The following parameters were used while solving the above described problem 
[19]: 

• Convergence defines the maximum percentage difference in objective values for 
the top 99% of the population that Solver should allow in order to stop with the 
message “Solver converged to the current solution.” We have chosen for this 
parameter c=0.0001. 

• Mutation Rate defines the relative frequency with which some member of the 
population will be mutated. However, a higher mutation rate can increase the 
diversity of the population, but we have defined a mutation rate mr=0.075. 

• Population Size defines the number of potential solutions, which are taken into 
consideration and managed in the same time. In our solver approach we have 
defined 100 individuals representing 100 potential solutions as the size of the 
population: ps=100. 

• Random seed defines the initial value of the random generator. We have left this 
value blank, so the random generator uses different random seeds for every 
optimisation. 

• Maximum time without improvement parameter defines the time the user want to 
run the solver without finding a better solution. We have defined for this 
parameter mt=30 s. 
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4. RESULTS AND DISCUSSION 
 
The method of discrete simulation will be used to compare the three variants of scheduling 
tasks. In a computer environment, the developed model (Fig. 3) was launched for three 
permutation variants of the technological route of the workpieces A, B, C. Variant VA - 
items to be processed enter in the order from the first to the last, variant VB - items enter 
from the last to the first, VC variant - items enter the system in the optimal order: 

• VA = {1, 2, 3, 4, 5, 6, 7, 8, 9 }; 
• VB = {9, 8, 7, 6, 5, 4, 3, 2, 1 }; 
• VC = {6, 1, 4, 5, 2, 3, 8, 7, 9 } ; optimal sequence based on simulation (72 time 

units) 
 
Based on the conducted simulation experiments Gantt’s charts has been drawn, which show 
the occupation and idleness of machines for individual variants and the total execution time 
(Figures 4-6). In the Gantt chart, black means that the machine is idle, while white means 
that the machine is busy. 
 

 
Figure 4. Gantt charts show the use of machines in various variant A 

 
Figure 5. Gantt charts show the use of machines in various variant B 

 
Figure 6. Gantt charts show the use of machines in various variant C 
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Figure 7. Results obtained from the optimizer 

As demonstrated by the simulations carried out, variant C turned out to be optimal with a 
total execution time of 72 time units. For variant B - 80 units were obtained, for variant A - 
78 time units. From the possible (9!) set of permutations, the optimizer chose the best 100 
solutions, shown in Figure 7. As a result of the conducted experiments, reliable results 
ranging from 89 to 72 time units were obtained. The real working time of the optimizer - 9 
seconds, the number of permissible permutations – 100. Hardware Intel(R) Core(TM) i9-
9900KF CPU 3.60 GHz with 16GB RAM, RTX 2070 Super. 

In conclusion, it can be assumed that the algorithms available today in the commonly 
used optimizers (including the tested optimizer OptQuest) are very good at scheduling 
tasks. And simulation programs, among others FlexSim, Arena, Promodel and others allow 
you to quickly build and check the performance of even complex models of production 
systems that can be easily adapted to other fields to optimize tasks. 

The second optimization approach was the evolutive solver, which found a better 
solution. As Figure 8 shows, the optimal sequence required 64 time units, which represents 
90% of the solution of the simulation-based approach. Blue and orange represent the 
production, while gray is for idle time. 
 

 
Figure 8. Results obtained from the evolutive solver 

5. SUMMARY 
 
Simulation and optimisation represent two important approach to improve the efficiency of 
production and logistics processes. These tools are important both for in-plant problems and 
for supply chain solutions [20]. Within the frame of this article the authors demonstrated 
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the potentials of simulation and heuristic-based optimizers in the case of permutation flow-
shop problems. As the computational results and simulation studies show, both the 
simulation and the heuristic optimizer resulted a quasi-optimal solution. The future research 
direction is to make more sophisticated comparisons including more potential solution 
methodologies and tools [21, 22] and include more simulation based approaches [23]. 
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