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NEURAL NETWORKS FOR VEHICLE ROUTING PROBLEM 
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Abstract: The Vehicle Routing Problem is about optimizing the routes of vehicles to meet the needs of 
customers at specific locations. The route graph consists of depots on several levels and customer 
positions. Several optimization methods have been developed over the years, most of which are based 
on some type of classic heuristic: genetic algorithm, simulated annealing, tabu search, ant colony 
optimization, firefly algorithm. Recent developments in machine learning provide a new toolset, the 
rich family of neural networks, for tackling complex problems. The main area of application of neural 
networks is the area of classification and regression. Route optimization can be viewed as a new 
challenge for neural networks. The article first presents an analysis of the applicability of neural 
network tools, then a novel graphical neural network model is presented in detail. The efficiency 
analysis based on test experiments shows the applicability of the proposed NN architecture. 
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1. INTRODUCTION 
 

1.1. Vehicle routing problem and TSP 

 

The Vehicle Routing Problem (VRP) is a very important problem domain in transportation 

and logistics. It is about organizing vehicle routes efficiently to meet the needs of customers. 

Basically, VRP involves sending vehicles from certain places to deliver goods to customers 

and then returning. In literature, many different types of VRP have developed to meet the 

needs of different industries. These types include options like specific delivery times, sending 

goods through different stages (from warehouses to local distribution points and then to 

customers), routes that don't return to the start, handling many kinds of products, using many 

vehicles, and planning routes for electric vehicles. VRP can be about moving things inside a 

facility or outside, and it can even cover the whole process of getting products from start to 

end. As transportation tasks get more complex, with the need to deliver many kinds of 

products, use different types of vehicles, and deal with various delivery points, using 

computers to help plan and manage these tasks is becoming very important for being 

efficient. 

The core module of the VRP tasks is to find the shortest path to connect the operation 

sides. This problem domain is called the Traveling Salesman Problem (TSP) problem. The 

objective of the TSP family is to discover the shortest Hamiltonian cycle within a weighted 

graph, where each vertex is visited exactly once. The path's length is determined by the sum 

of the corresponding edge weights. Solving the problem involves finding an optimal 

permutation of vertices to create the shortest route. TSP algorithms are versatile and can be 

applied to various scenarios such as: 

• Optimizing transportation routes for delivery and collection tasks [1]. 

• Heuristically solving knapsack optimization problems [2]. 
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• Planning optimal production sequences [3]. 

• Addressing printing press scheduling issues [4]. 

 

Different variants of the TSP problem exist, including: 

• Base Traveling Salesman Problem: a single depot position and a single salesman. 

• MTSP - Multiple Traveling Salesman Problem: a single depot position and multiple 

salesmen. 

• MDMTSP - Multi Depot Multiple Traveling Salesman Problem: multiple depots 

and salesmen, with each salesman assigned to a specific depot. 

 

1.2. Neural Networks 

 

The neural network (NN) architecture is the current dominating approach in machine learning 

to support decision making processes. The NN architecture is a special function approximator 

which can learn the prediction model from information stored in a training dataset. The main 

methods in application of NN are the classification and the regression. The input training 

dataset is given in the form of a list of <X (feature vector), Y (label)> pairs. Each feature 

vector corresponds to an object instanced in the training space, where the coordinate values 

represent the different attribute values. In the case of classification, the label denotes the 

target discrete category, while for the regression problem, the label is the related continuous 

value.  

The main goal of the training process is the build a mathematical model 

 

NN: X → Y 

 

with a good accuracy. The base NN architecture consists of connected neurons organized into 

layers. Each neuron performs a linear space separation (elementary decision) and generates 

a non-linear output as the result level of the elementary decision. The generated elementary 

output values are later compiled into a new hidden feature vector in a high dimensional space. 

Based on this architecture, the NN can approximate any complex functions. The largest NN 

systems, like the GPT models for ChatGPT contain more than 1012 parameters.  

The NN architectures are widely used tools for category or value prediction as the model 

provides the following key properties: 

• Non-linearity: Neural networks employ activation functions, enabling them to 

model complex, non-linear relationships between inputs and outputs. 

• Parallel Processing: Neural networks are capable of parallel processing, allowing 

for efficient computation of large-scale problems across multiple nodes or layers 

simultaneously. 

• Adaptability: Neural networks can adapt and learn from data through training 

processes, adjusting their parameters to optimize performance on specific tasks. 

• Generalization: Trained neural networks can generalize their learned patterns to 

new, unseen data, making them effective in various prediction and classification 

tasks. 

• Scalability: Neural networks can scale to handle large datasets and complex 

problems by increasing the number of layers, neurons, or using parallel processing 

techniques. 
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• Robustness to Noise: Neural networks can tolerate noisy inputs and incomplete data, 

often producing reliable outputs even in the presence of uncertainty. 

• Representation Learning: Neural networks automatically learn relevant features and 

representations from raw data, eliminating the need for manual feature engineering 

in many cases. 

• Feature Hierarchies: Deep neural networks can learn hierarchical representations of 

features, capturing both low-level and high-level abstractions in the data. 

• Transfer Learning: Pre-trained neural network models can be adapted to new tasks 

with minimal retraining, leveraging knowledge learned from previous tasks. 

• Interpretability: While neural networks can be complex and opaque, efforts are 

ongoing to develop techniques for interpreting and understanding their decision-

making processes, improving transparency and trustworthiness. 

 

Beside the positive properties, we can also mention the difficulties in the application of NN, 

like 

• Black box model: it is hard or impossible to verify the correctness of the generated 

model, as the huge complexity is not interpretable by humans. 

• It is hard to the find the optimal model as the accuracy on the training set does not 

ensure the good result on the application dataset.  

• The training process can be very time-consuming and expensive. 

• The stability of the models is usually not guaranteed. 

 

2. ROUTE OPTIMIZATION METHODS 

 

The TSP problem falls into two main domains: the decision problem (DTSP) and the 

optimization problem (OTSP). DTSP involves determining whether a Hamiltonian cycle with 

a length not exceeding a given value exists. On the other hand, OTSP aims to find the shortest 

Hamiltonian cycle. This paper focuses on analysing the OTSP optimization problem, 

typically formulated as a linear programming problem [5]. OTSP is NP-hard [6], and brute-

force algorithms have a time complexity of O(N!). Therefore, heuristic approaches are 

essential for approximating the global optimum efficiently. TSP heuristic optimization is 

extensively studied in combinatorial optimization research. 

Minimizing the route length holds paramount importance as it significantly im-pacts 

profitability, directly correlating with factors such as fuel consumption, human resource 

expenses, the requisite number of vehicles, among others. Thus, route length emerges as a 

pivotal determinant warranting meticulous consideration. The standard goal of the TSP 

optimization [7] is to minimize 

 

∑i1=1
n_l  ∑i2=1

n_l ∑j1=1
n_p

∑j2=1
n_p

∑k=1
n_v ∑t=1

n_t  TDBNi1,i2,j1,j2,k,tλj1,j2
i1,i2,k,t,m

 

 

for all product types m, where 

 𝜆𝑗1,𝑗2
𝑖1,𝑖2,𝑘,𝑡,𝑚

  is the decision variable and 

 𝑇𝐷𝐵𝑁𝑖1,𝑖2,𝑗1,𝑗2,𝑘,𝑡 is the distance matrix. 

 

The value of the decision variable is either 1 or 0. In the formulas, k denotes the vehicle 

index, t is for the time period, i is the level index and j is the node index.  
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Various heuristic methods exist for solving TSP problems, including Nearest Neighbour, 

Nearest Insertion, Tabu Search, Lin-Kernighan, Greedy, Boruvka, Savings, Genetic 

Algorithm, and Swarm Optimization. A comprehensive analysis and performance 

comparison of these methods can be found in literature [8][9]10]. Based on this analysis: 

• Greedy and Savings methods are the fastest but offer only average tour quality. 

• Nearest Neighbour and Nearest Insertion algorithms are outperformed by Greedy 

and Savings methods in both time and tour quality. 

• Optimal route quality can be achieved by employing 3-opt/5-opt methods (Lin-

Kernighan and Helsgaun) [11]. 

• Chained Lin-Kernighan algorithm demonstrates the best overall performance 

considering both time and tour quality. 

• Evolutionary and Swarm optimization methods lag behind k-opt methods in both 

time and tour quality. 

• Tour-merging techniques combined with the Chained Lin-Kernighan algorithm can 

enhance tour quality but at a higher time cost. 

 

Regarding optimization methodologies, OTSP algorithms can be categorized into two main 

groups: incremental construction methods and refinement-based methods. Incremental 

construction methods iteratively add nodes to an evolving optimal route, while refinement-

based methods refine an initial route through iterative neighbourhood exploration for local 

optima. 

Heuristic methods typically converge to local optima in the optimization space. The 

efficiency of these algorithms, in terms of optimal value and time cost, heavily depends on 

the characteristics of the optimization space, which, in the case of TSP problems, is the space 

of node permutations. Our study aims to analyse this optimization space to improve 

approximations of both global and local optima. 

 

3. NEURAL NETWORKS FOR TSP 
 

Neural networks have been explored in various ways to tackle the Traveling Sales-man 

Problem (TSP). The main approaches in application of NN in TSP: 

Neural Network-based Heuristics [16]: Neural networks can be trained to act as heuristics, 

providing approximate solutions to the TSP. These networks take as input the problem 

instance (e.g., node positions, distances between nodes) and output a permutation of nodes 

representing a potential solution. Reinforcement learning techniques can be employed to train 

these networks to generate high-quality solutions through trial and error. 

Learning Policies for Optimization Algorithms [13]: Neural networks can learn policies 

to guide optimization algorithms (such as local search or genetic algorithms) in the search 

for optimal or near-optimal solutions. The network learns to make decisions at each step of 

the algorithm based on the current state of the solution, improving the algorithm's 

effectiveness. 

End-to-End Solution Approaches [14]: Neural networks can be used to directly learn 

mappings from problem instances to solutions without relying on traditional optimization 

algorithms. These end-to-end approaches often involve training a neural network to 

approximate the mapping function from problem instances to solutions using large datasets 

of TSP instances and their corresponding optimal solutions. 
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Embedding Techniques [15]: Graph embedding techniques, such as graph convolutional 

networks (GCNs), can be utilized to embed the TSP graph into a continuous vector space 

where geometric relationships between nodes are preserved. These embeddings can then be 

fed into traditional optimization algorithms or neural networks to generate solutions. 

Attention Mechanisms [15]: Neural networks equipped with attention mechanisms can 

be used to learn to focus on relevant parts of the input (e.g., node distances) when generating 

solutions. Attention mechanisms have shown promise in improving the performance of 

neural network-based approaches for the TSP. 

Hybrid Approaches [17]: Combining neural networks with traditional optimization 

algorithms or metaheuristics can often yield better performance than using either approach 

alone. For example, neural networks can be used to guide the search space exploration of 

metaheuristic algorithms or to improve the initialization of optimization algorithms. 

Overall, neural networks offer a flexible and powerful framework for solving the TSP, 

and their effectiveness depends on factors such as problem size, available computational 

resources, and the specific characteristics of the TSP instances being considered. 

 

3.1. Hopfield Neural Network Implementations 

 

The first neural network model for solving TSP was the Hopfield neural network which was 

presented in 1985 [18]. The network has a recurrent architecture, as it has feedback 

connections that allow it to store and retrieve patterns from its state. This recurrent nature 

allows it to exhibit dynamic behaviour over time. Each neuron in the Hopfield network is 

fully connected to every other neuron, forming a symmetric weight matrix. This connectivity 

ensures that every neuron influences every other neuron in the network. Considering the 

operability, the Hopfield network is an energy-based model where each state of the network 

corresponds to an energy level. The network aims to minimize this energy to reach stable 

states, which correspond to stored patterns. The weights in a Hopfield network are typically 

updated using a Hebbian learning rule, which strengthens connections between neurons that 

fire simultaneously. This learning rule is unsupervised and is based on the principle of 

association between neurons. In the adaptation of the Hopfiled NN for TSP, the authors 

defined the following energy function as objective function in the training process Eqs. (5) 

and (6). 

 
A

2
∑x∑i∑jXxiXxj + 

B

2
∑x∑i∑yXxiXyi + 

C

2
(∑x∑iXxi-N)2+

D

2
∑x∑y∑idxyXxi(Yxi'-Yxi') 

 

3.2. Graph Neural Network 

 

The other neural network architecture suitable for solving the TSP problem is the Graph 

Neural Network [19]. Graph Neural Networks (GNNs) are a class of neural networks 

designed to process data represented in graph structures. GNNs operate on data structured as 

graphs, which consist of nodes (vertices) connected by edges (links or relationships). This 

enables them to model relationships and dependencies between elements in the data. GNNs 

can handle both node and edge features, allowing them to incorporate rich information 

associated with each node and edge in the graph. These features can be continuous or discrete, 

and they capture attributes of the elements in the graph. The feature vector describes among 

others the context of the nodes and edges, i.e. the properties of the neighbourhood elements. 
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The vector identifies the position of the node using the description of the neighbourhood 

elements. The feature vectors are sometimes called embedding vectors as they convert the 

complex neighbourhood into a shorter feature vector. 

As the feature vector of a given node depends on the feature vectors of the 

neighbourhood nodes, we can give that 

W = f(W). 

 

The calculation of the vector components is performed with an iterative process: 

 

 Wi = f(Wi-1 ). 

 

The GNNs architecture typically uses a message-passing mechanism to propagate 

information between nodes in the graph. At each step, nodes aggregate information from their 

neighbours, update their own representations, and then pass this updated information to 

neighbouring nodes. This process is iterated for multiple steps to capture information from 

distant parts of the graph. The main steps of the calculation of the embedding vectors are the 

following steps: 

• message computation 

• message passing to the neighbours 

• message aggregations  

• message updates 

 

GNNs often utilize attention mechanisms to assign importance weights to neigh-boring nodes 

or edges during message passing. This allows the network to focus on relevant information 

and ignore irrelevant or noisy signals in the graph. GNNs can be applied to various tasks such 

as node classification, graph classification, link prediction, and graph regression. They learn 

to predict labels or properties associated with nodes, edges, or entire graphs based on their 

structural and feature information. 

The update of the feature vectors can be given with 

 

x'i = W1xi + ∑j ∈N αi,jW2xj 

 

where the attention parameters are calculated with 

 

αi,j = softmax (
(W3xi)

T(W4xj)

√d
) 

 

Having the final embedding vectors, the network can be used to perform classification 

predictions. The input of the prediction NN module is the generated feature vector. The NN 

module can be used for among others to  

• predict a feature of the nodes 

• predict a feature of the edges 

• predict the existence of nodes 

• predict the existence of edges 
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In order to perform the prediction, the NN must be trained on the corresponding database. In 

the case of GNN, the training data itself is a graph, usually a subset of the target graph. Thus, 

for using GNN, we first construct a graph which contains both the training part and the 

prediction part. 

 

3.3. GNN for shortest path 

 

The GNN example presented in [20], presents a GNN network for finding the shortest path 

between two nodes. The implementation of the GNN is based on the Tensor-flow-GNN 

library, which includes among others the following operators: 

• tfgnn.keras.layers.EdgeSetUpdate 

• tfgnn.keras.layers.NodeSetUpdate 

• tfgnn.keras.layers.ContextUpdate 

• tfgnn.keras.layers.GraphUpdate 

• fgnn.keras.layers.MapFeatures 

 

The framework generates training sets from connected graphs which are converted into GNN 

network. The network stores hidden features for all nodes and edges which denote whether 

the given component does belong to the shortest path or not. The main goal of the training is 

to determine the nodes and edges which are the components of the shortest path connecting 

to given nodes.  

The implemented architecture corresponds to the deep GNN model defined in [21]. The 

generation of the local MLP networks to predict the labels for the edges and nodes, are based 

on the following algorithm: 

 

  mlp = tf.keras.Sequential(name="mlp") 

  for layer_i, size in enumerate(output_sizes): 

    layer_activation = activation 

    if not activate_final and layer_i == len(output_sizes) - 1: 

      layer_activation = None 

    mlp.add(tf.keras.layers.Dense( 

        size, 

        activation=layer_activation, 

        use_bias=True, 

        kernel_initializer="variance_scaling" 

        ) 

  if use_layer_norm: 

    mlp.add(tf.keras.layers.LayerNormalization( 

        name=f"{name}/layer_norm")) 

  return mlp 

 

As it can be seen the network uses the standard Dense layers. In each iteration of the training, 

the nodes send the hidden status values to the neighbouring nodes using a message passing 

mechanism proposed by [22].  

For the tested small datasets, the GNN architecture achieved a significant accuracy level 

(98%). Fig 1. shows some sample graphs from the datasets. 
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Figure 1. Sample graphs for the shortest path problem using GNN. 

To adapt the GNN for the TSP problem domain, we updated the network architecture with 

the following elements: 

• we used a fully connected graph, each node pairs are connected 

• we used a TSP library [fast_tsp] to determine the optimal cycle in the graph 

• there is no start and end nodes in the graph. 

 

 

Figure 2. Sample graphs for the TSP path problem using GNN. 

During the testing of the proposed architecture, we experienced that the resulted model was 

very weak (20%) on the test datasets. These experiences show that the standard GNN or NN 

networks are not suitable for direct application on TSP tasks, as 

• TSP requires global scale optimization, while message passing is rather a local scale 

operation. 

• The classification in MLP modules performs prediction on single node or single 

edge level, not at global level.  

• Prediction steps in GNN are mainly independent from each other, they do not 

consider the results in the previous steps. 

 

Thus, because of these experiments, a novel approach should be used for solving TSP with 

neural network architecture. 
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3.4. Proposed Neural Network Architecture for TSP 

 

In our research project we focused on the development of a special neural network for the 

TSP problem. In the proposed architecture, the network is aimed as optimizing the length of 

the cycle route. In order to optimize a global function, we re-structured the architecture of 

the neural network. In the proposed architecture, the error of the training process is measured 

not with the usual 

 

𝐸 =  ∑𝑖  (𝑦𝑖 − 𝑦′𝑖)
2 

 

difference sum function, but with the  

 

𝐸 =  ∑𝑖  | 𝑝𝑖| 
 

where pi denotes the i-th section of the Hamiltonian cycle. This step requires the development 

of custom neural network layers which can be implemented with the graph flow model of the 

Tensorflow framework. 

As the usual optimization engine of the neural network architecture, the backpropagation 

module, implements a gradient descend optimization strategy, the located optimum is usually 

only a local optimum position. In the different optimization methods, some random relocation 

steps are involved to give chance of a cost improvement in the undiscovered areas of the 

optimization space. In the case of genetic algorithm, the following genetic operators are 

utilized for stochastic steps: 

• crossover: exchange of different sections of the feature vectors 

• mutation: modification of some section of the feature vector 

 

The proposed architecture contains a modified optimization engine which expands the 

gradient descend approach with additional crossover and mutation operations.  This 

modification can improve the general efficiency of the embedded backpropagation engine. 

We remark that one interesting consequence of the structural extension is that we have a 

unique cost function run during the training, as is shown in Fig. 3. 

 

 

Figure 3. Error function curve of the updated optimization engine. 
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In the curve of the error function, we can see some peaks which mean the points we the search 

jumped to a new position to start a new gradient descend process. At that step, we move from 

a local optimum to another position with worse fitness, but later it will find a new local 

optimum with better fitness. 

In order to apply the proposed optimization engine for the TSP problem, we developed a 

novel representation formalism for the TSP, where integer programming was replaced with 

a real valued optimization model.  In this representation format, the network consists of only 

simple layers, where the network parameters, edge weights correspond to the relevance level 

of the graph edges. High relevance means that the corresponding graph edge is part of the 

Hamiltonian cycle. 

 

4. TEST EXPERIMENTS 
 

The implementation of the test environment was developed in the popular Python framework. 

The neural network objects were built up with Tensorflow-Keras library. In this case, the NN 

object can be constructed by adding the component layers to the current architecture in a 

graph flow formalism. The main benefit of this approach is that is more flexible, and it 

provides more functionality than the usual sequential network model.  

 

inputs = Input(shape=(1,)) 

output = MG_SN_Layer(N_points,Dim,f_modelb, 

activation='linear',name="mydense")(inputs) 

mg_sn_model = Model(inputs, output) 

mg_sn_model.compile(optimizer='sgd', loss='mse') 

sprecbn = 

CustomCallbackBN(N_points,Dim,Lcalc,Blen 

 

In the new model, the calculation of the current cost (error) function depends on the problem 

domain, thus a custom layer is needed to implement these calculations. As the next code 

snippet shows, we can use the Tensorflow library to efficiently implement any calculations 

within the custom layer. 

 

def call (self,inputs): 

t1 = tf.constant([0.3,0.7]) 

t2 = self.kernel - t1 

t3 = tf.multiply(t2,t2) 

t4 = tf.reduce\_sum(t3,axis=0) 

t5 = tf.constant([1.3]) 

t6 = t5 + t4 

return t6 

 

Regarding the test results, we can see that this approach provided superior efficiency 

compared to the previous approaches, it generated very good approximations in the tested 

cases with small and medium size networks. Figure 4 shows some key steps in the training 

process to determine the winner cycle. 
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Figure 4. The shape of the winner cycle in different epochs of the training. 

5. CONCLUSION 
 

The VRP and TSP are very important problem domains in transportation and logistics. Due 

to the complexity of the problem, some kind of heuristics are used to solve the problems of 

practical sizes.  Beside the dominating conventional methods, like the Lin-Kernighan and 

Helsgaun method, there is an increasing interest in application of so mind of machine learning 

approaches. In this paper, we investigated the application potential of neural network 

technology.  

In the first approaches of NN-TSP integration, the Hopfield network was the dominating 

architecture model, it provided the best efficiency. In the current years, the focus of the 

research turned to the application of the graph neutral network architecture as TSP is defined 

on graph structure. The performed analysis shows that the standard GNN model has a low 

efficiency for TSP as it works with local optimization methods while TSP requires a global 

optimization scope. 

As novel approach, we presented an optimization-oriented network architecture which 

implements a genetic algorithm optimization layer on the top of the standard gradient descend 

method. The prototype of the proposed architecture was implemented with custom layer 

elements of Tensorflow framework. The performed tests show that the proposed model 

dominates the regular GNN-based approaches. 
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