
Advanced Logistic Systems – Theory and Practice, Vol. 18, No. 2 (2024), pp. 17-29.
https://doi.org/10.32971/als.2024.014

NEURAL NETWORKS FOR VEHICLE ROUTING PROBLEM

LÁSZLÓ KOVÁCS1 − ALI JLIDI 2

Abstract: The Vehicle Routing Problem is about optimizing the routes of vehicles to meet the needs of
customers at specific locations. The route graph consists of depots on several levels and customer
positions. Several optimization methods have been developed over the years, most of which are based
on some type of classic heuristic: genetic algorithm, simulated annealing, tabu search, ant colony
optimization, firefly algorithm. Recent developments in machine learning provide a new toolset, the
rich family of neural networks, for tackling complex problems. The main area of application of neural
networks is the area of classification and regression. Route optimization can be viewed as a new
challenge for neural networks. The article first presents an analysis of the applicability of neural
network tools, then a novel graphical neural network model is presented in detail. The efficiency
analysis based on test experiments shows the applicability of the proposed NN architecture.

Keywords: route planning, TSP, neural networks, GNN

1. INTRODUCTION

1.1. Vehicle routing problem and TSP

The Vehicle Routing Problem (VRP) is a very important problem domain in transportation

and logistics. It is about organizing vehicle routes efficiently to meet the needs of customers.

Basically, VRP involves sending vehicles from certain places to deliver goods to customers

and then returning. In literature, many different types of VRP have developed to meet the

needs of different industries. These types include options like specific delivery times, sending

goods through different stages (from warehouses to local distribution points and then to

customers), routes that don't return to the start, handling many kinds of products, using many

vehicles, and planning routes for electric vehicles. VRP can be about moving things inside a

facility or outside, and it can even cover the whole process of getting products from start to

end. As transportation tasks get more complex, with the need to deliver many kinds of

products, use different types of vehicles, and deal with various delivery points, using

computers to help plan and manage these tasks is becoming very important for being

efficient.

The core module of the VRP tasks is to find the shortest path to connect the operation

sides. This problem domain is called the Traveling Salesman Problem (TSP) problem. The

objective of the TSP family is to discover the shortest Hamiltonian cycle within a weighted

graph, where each vertex is visited exactly once. The path's length is determined by the sum

of the corresponding edge weights. Solving the problem involves finding an optimal

permutation of vertices to create the shortest route. TSP algorithms are versatile and can be

applied to various scenarios such as:

• Optimizing transportation routes for delivery and collection tasks [1].

• Heuristically solving knapsack optimization problems [2].

1univ. professor, University of Miskolc, Institute of Information Technology

Laszlo.kovacs@uni-miskolc.hu
2student, University of Miskolc, Institute of Information Technology
jlidi.ali@student.uni-miskolc.hu

https://doi.org/10.32971/als.2024.014

18 László Kovács − Ali Jlidi

• Planning optimal production sequences [3].

• Addressing printing press scheduling issues [4].

Different variants of the TSP problem exist, including:

• Base Traveling Salesman Problem: a single depot position and a single salesman.

• MTSP - Multiple Traveling Salesman Problem: a single depot position and multiple

salesmen.

• MDMTSP - Multi Depot Multiple Traveling Salesman Problem: multiple depots

and salesmen, with each salesman assigned to a specific depot.

1.2. Neural Networks

The neural network (NN) architecture is the current dominating approach in machine learning

to support decision making processes. The NN architecture is a special function approximator

which can learn the prediction model from information stored in a training dataset. The main

methods in application of NN are the classification and the regression. The input training

dataset is given in the form of a list of <X (feature vector), Y (label)> pairs. Each feature

vector corresponds to an object instanced in the training space, where the coordinate values

represent the different attribute values. In the case of classification, the label denotes the

target discrete category, while for the regression problem, the label is the related continuous

value.

The main goal of the training process is the build a mathematical model

NN: X → Y

with a good accuracy. The base NN architecture consists of connected neurons organized into

layers. Each neuron performs a linear space separation (elementary decision) and generates

a non-linear output as the result level of the elementary decision. The generated elementary

output values are later compiled into a new hidden feature vector in a high dimensional space.

Based on this architecture, the NN can approximate any complex functions. The largest NN

systems, like the GPT models for ChatGPT contain more than 1012 parameters.

The NN architectures are widely used tools for category or value prediction as the model

provides the following key properties:

• Non-linearity: Neural networks employ activation functions, enabling them to

model complex, non-linear relationships between inputs and outputs.

• Parallel Processing: Neural networks are capable of parallel processing, allowing

for efficient computation of large-scale problems across multiple nodes or layers

simultaneously.

• Adaptability: Neural networks can adapt and learn from data through training

processes, adjusting their parameters to optimize performance on specific tasks.

• Generalization: Trained neural networks can generalize their learned patterns to

new, unseen data, making them effective in various prediction and classification

tasks.

• Scalability: Neural networks can scale to handle large datasets and complex

problems by increasing the number of layers, neurons, or using parallel processing

techniques.

Neural networks for vehicle routing problem 19

• Robustness to Noise: Neural networks can tolerate noisy inputs and incomplete data,

often producing reliable outputs even in the presence of uncertainty.

• Representation Learning: Neural networks automatically learn relevant features and

representations from raw data, eliminating the need for manual feature engineering

in many cases.

• Feature Hierarchies: Deep neural networks can learn hierarchical representations of

features, capturing both low-level and high-level abstractions in the data.

• Transfer Learning: Pre-trained neural network models can be adapted to new tasks

with minimal retraining, leveraging knowledge learned from previous tasks.

• Interpretability: While neural networks can be complex and opaque, efforts are

ongoing to develop techniques for interpreting and understanding their decision-

making processes, improving transparency and trustworthiness.

Beside the positive properties, we can also mention the difficulties in the application of NN,

like

• Black box model: it is hard or impossible to verify the correctness of the generated

model, as the huge complexity is not interpretable by humans.

• It is hard to the find the optimal model as the accuracy on the training set does not

ensure the good result on the application dataset.

• The training process can be very time-consuming and expensive.

• The stability of the models is usually not guaranteed.

2. ROUTE OPTIMIZATION METHODS

The TSP problem falls into two main domains: the decision problem (DTSP) and the

optimization problem (OTSP). DTSP involves determining whether a Hamiltonian cycle with

a length not exceeding a given value exists. On the other hand, OTSP aims to find the shortest

Hamiltonian cycle. This paper focuses on analysing the OTSP optimization problem,

typically formulated as a linear programming problem [5]. OTSP is NP-hard [6], and brute-

force algorithms have a time complexity of O(N!). Therefore, heuristic approaches are

essential for approximating the global optimum efficiently. TSP heuristic optimization is

extensively studied in combinatorial optimization research.

Minimizing the route length holds paramount importance as it significantly im-pacts

profitability, directly correlating with factors such as fuel consumption, human resource

expenses, the requisite number of vehicles, among others. Thus, route length emerges as a

pivotal determinant warranting meticulous consideration. The standard goal of the TSP

optimization [7] is to minimize

∑i1=1
n_l ∑i2=1

n_l ∑j1=1
n_p

∑j2=1
n_p

∑k=1
n_v ∑t=1

n_t TDBNi1,i2,j1,j2,k,tλj1,j2
i1,i2,k,t,m

for all product types m, where

 𝜆𝑗1,𝑗2
𝑖1,𝑖2,𝑘,𝑡,𝑚

 is the decision variable and

 𝑇𝐷𝐵𝑁𝑖1,𝑖2,𝑗1,𝑗2,𝑘,𝑡 is the distance matrix.

The value of the decision variable is either 1 or 0. In the formulas, k denotes the vehicle

index, t is for the time period, i is the level index and j is the node index.

20 László Kovács − Ali Jlidi

Various heuristic methods exist for solving TSP problems, including Nearest Neighbour,

Nearest Insertion, Tabu Search, Lin-Kernighan, Greedy, Boruvka, Savings, Genetic

Algorithm, and Swarm Optimization. A comprehensive analysis and performance

comparison of these methods can be found in literature [8][9]10]. Based on this analysis:

• Greedy and Savings methods are the fastest but offer only average tour quality.

• Nearest Neighbour and Nearest Insertion algorithms are outperformed by Greedy

and Savings methods in both time and tour quality.

• Optimal route quality can be achieved by employing 3-opt/5-opt methods (Lin-

Kernighan and Helsgaun) [11].

• Chained Lin-Kernighan algorithm demonstrates the best overall performance

considering both time and tour quality.

• Evolutionary and Swarm optimization methods lag behind k-opt methods in both

time and tour quality.

• Tour-merging techniques combined with the Chained Lin-Kernighan algorithm can

enhance tour quality but at a higher time cost.

Regarding optimization methodologies, OTSP algorithms can be categorized into two main

groups: incremental construction methods and refinement-based methods. Incremental

construction methods iteratively add nodes to an evolving optimal route, while refinement-

based methods refine an initial route through iterative neighbourhood exploration for local

optima.

Heuristic methods typically converge to local optima in the optimization space. The

efficiency of these algorithms, in terms of optimal value and time cost, heavily depends on

the characteristics of the optimization space, which, in the case of TSP problems, is the space

of node permutations. Our study aims to analyse this optimization space to improve

approximations of both global and local optima.

3. NEURAL NETWORKS FOR TSP

Neural networks have been explored in various ways to tackle the Traveling Sales-man

Problem (TSP). The main approaches in application of NN in TSP:

Neural Network-based Heuristics [16]: Neural networks can be trained to act as heuristics,

providing approximate solutions to the TSP. These networks take as input the problem

instance (e.g., node positions, distances between nodes) and output a permutation of nodes

representing a potential solution. Reinforcement learning techniques can be employed to train

these networks to generate high-quality solutions through trial and error.

Learning Policies for Optimization Algorithms [13]: Neural networks can learn policies

to guide optimization algorithms (such as local search or genetic algorithms) in the search

for optimal or near-optimal solutions. The network learns to make decisions at each step of

the algorithm based on the current state of the solution, improving the algorithm's

effectiveness.

End-to-End Solution Approaches [14]: Neural networks can be used to directly learn

mappings from problem instances to solutions without relying on traditional optimization

algorithms. These end-to-end approaches often involve training a neural network to

approximate the mapping function from problem instances to solutions using large datasets

of TSP instances and their corresponding optimal solutions.

Neural networks for vehicle routing problem 21

Embedding Techniques [15]: Graph embedding techniques, such as graph convolutional

networks (GCNs), can be utilized to embed the TSP graph into a continuous vector space

where geometric relationships between nodes are preserved. These embeddings can then be

fed into traditional optimization algorithms or neural networks to generate solutions.

Attention Mechanisms [15]: Neural networks equipped with attention mechanisms can

be used to learn to focus on relevant parts of the input (e.g., node distances) when generating

solutions. Attention mechanisms have shown promise in improving the performance of

neural network-based approaches for the TSP.

Hybrid Approaches [17]: Combining neural networks with traditional optimization

algorithms or metaheuristics can often yield better performance than using either approach

alone. For example, neural networks can be used to guide the search space exploration of

metaheuristic algorithms or to improve the initialization of optimization algorithms.

Overall, neural networks offer a flexible and powerful framework for solving the TSP,

and their effectiveness depends on factors such as problem size, available computational

resources, and the specific characteristics of the TSP instances being considered.

3.1. Hopfield Neural Network Implementations

The first neural network model for solving TSP was the Hopfield neural network which was

presented in 1985 [18]. The network has a recurrent architecture, as it has feedback

connections that allow it to store and retrieve patterns from its state. This recurrent nature

allows it to exhibit dynamic behaviour over time. Each neuron in the Hopfield network is

fully connected to every other neuron, forming a symmetric weight matrix. This connectivity

ensures that every neuron influences every other neuron in the network. Considering the

operability, the Hopfield network is an energy-based model where each state of the network

corresponds to an energy level. The network aims to minimize this energy to reach stable

states, which correspond to stored patterns. The weights in a Hopfield network are typically

updated using a Hebbian learning rule, which strengthens connections between neurons that

fire simultaneously. This learning rule is unsupervised and is based on the principle of

association between neurons. In the adaptation of the Hopfiled NN for TSP, the authors

defined the following energy function as objective function in the training process Eqs. (5)

and (6).

A

2
∑x∑i∑jXxiXxj +

B

2
∑x∑i∑yXxiXyi +

C

2
(∑x∑iXxi-N)2+

D

2
∑x∑y∑idxyXxi(Yxi'-Yxi')

3.2. Graph Neural Network

The other neural network architecture suitable for solving the TSP problem is the Graph

Neural Network [19]. Graph Neural Networks (GNNs) are a class of neural networks

designed to process data represented in graph structures. GNNs operate on data structured as

graphs, which consist of nodes (vertices) connected by edges (links or relationships). This

enables them to model relationships and dependencies between elements in the data. GNNs

can handle both node and edge features, allowing them to incorporate rich information

associated with each node and edge in the graph. These features can be continuous or discrete,

and they capture attributes of the elements in the graph. The feature vector describes among

others the context of the nodes and edges, i.e. the properties of the neighbourhood elements.

22 László Kovács − Ali Jlidi

The vector identifies the position of the node using the description of the neighbourhood

elements. The feature vectors are sometimes called embedding vectors as they convert the

complex neighbourhood into a shorter feature vector.

As the feature vector of a given node depends on the feature vectors of the

neighbourhood nodes, we can give that

W = f(W).

The calculation of the vector components is performed with an iterative process:

 Wi = f(Wi-1).

The GNNs architecture typically uses a message-passing mechanism to propagate

information between nodes in the graph. At each step, nodes aggregate information from their

neighbours, update their own representations, and then pass this updated information to

neighbouring nodes. This process is iterated for multiple steps to capture information from

distant parts of the graph. The main steps of the calculation of the embedding vectors are the

following steps:

• message computation

• message passing to the neighbours

• message aggregations

• message updates

GNNs often utilize attention mechanisms to assign importance weights to neigh-boring nodes

or edges during message passing. This allows the network to focus on relevant information

and ignore irrelevant or noisy signals in the graph. GNNs can be applied to various tasks such

as node classification, graph classification, link prediction, and graph regression. They learn

to predict labels or properties associated with nodes, edges, or entire graphs based on their

structural and feature information.

The update of the feature vectors can be given with

x'i = W1xi + ∑j ∈N αi,jW2xj

where the attention parameters are calculated with

αi,j = softmax (
(W3xi)

T(W4xj)

√d
)

Having the final embedding vectors, the network can be used to perform classification

predictions. The input of the prediction NN module is the generated feature vector. The NN

module can be used for among others to

• predict a feature of the nodes

• predict a feature of the edges

• predict the existence of nodes

• predict the existence of edges

Neural networks for vehicle routing problem 23

In order to perform the prediction, the NN must be trained on the corresponding database. In

the case of GNN, the training data itself is a graph, usually a subset of the target graph. Thus,

for using GNN, we first construct a graph which contains both the training part and the

prediction part.

3.3. GNN for shortest path

The GNN example presented in [20], presents a GNN network for finding the shortest path

between two nodes. The implementation of the GNN is based on the Tensor-flow-GNN

library, which includes among others the following operators:

• tfgnn.keras.layers.EdgeSetUpdate

• tfgnn.keras.layers.NodeSetUpdate

• tfgnn.keras.layers.ContextUpdate

• tfgnn.keras.layers.GraphUpdate

• fgnn.keras.layers.MapFeatures

The framework generates training sets from connected graphs which are converted into GNN

network. The network stores hidden features for all nodes and edges which denote whether

the given component does belong to the shortest path or not. The main goal of the training is

to determine the nodes and edges which are the components of the shortest path connecting

to given nodes.

The implemented architecture corresponds to the deep GNN model defined in [21]. The

generation of the local MLP networks to predict the labels for the edges and nodes, are based

on the following algorithm:

 mlp = tf.keras.Sequential(name="mlp")

 for layer_i, size in enumerate(output_sizes):

 layer_activation = activation

 if not activate_final and layer_i == len(output_sizes) - 1:

 layer_activation = None

 mlp.add(tf.keras.layers.Dense(

 size,

 activation=layer_activation,

 use_bias=True,

 kernel_initializer="variance_scaling"

)

 if use_layer_norm:

 mlp.add(tf.keras.layers.LayerNormalization(

 name=f"{name}/layer_norm"))

 return mlp

As it can be seen the network uses the standard Dense layers. In each iteration of the training,

the nodes send the hidden status values to the neighbouring nodes using a message passing

mechanism proposed by [22].

For the tested small datasets, the GNN architecture achieved a significant accuracy level

(98%). Fig 1. shows some sample graphs from the datasets.

24 László Kovács − Ali Jlidi

Figure 1. Sample graphs for the shortest path problem using GNN.

To adapt the GNN for the TSP problem domain, we updated the network architecture with

the following elements:

• we used a fully connected graph, each node pairs are connected

• we used a TSP library [fast_tsp] to determine the optimal cycle in the graph

• there is no start and end nodes in the graph.

Figure 2. Sample graphs for the TSP path problem using GNN.

During the testing of the proposed architecture, we experienced that the resulted model was

very weak (20%) on the test datasets. These experiences show that the standard GNN or NN

networks are not suitable for direct application on TSP tasks, as

• TSP requires global scale optimization, while message passing is rather a local scale

operation.

• The classification in MLP modules performs prediction on single node or single

edge level, not at global level.

• Prediction steps in GNN are mainly independent from each other, they do not

consider the results in the previous steps.

Thus, because of these experiments, a novel approach should be used for solving TSP with

neural network architecture.

Neural networks for vehicle routing problem 25

3.4. Proposed Neural Network Architecture for TSP

In our research project we focused on the development of a special neural network for the

TSP problem. In the proposed architecture, the network is aimed as optimizing the length of

the cycle route. In order to optimize a global function, we re-structured the architecture of

the neural network. In the proposed architecture, the error of the training process is measured

not with the usual

𝐸 = ∑𝑖 (𝑦𝑖 − 𝑦′𝑖)
2

difference sum function, but with the

𝐸 = ∑𝑖 | 𝑝𝑖|

where pi denotes the i-th section of the Hamiltonian cycle. This step requires the development

of custom neural network layers which can be implemented with the graph flow model of the

Tensorflow framework.

As the usual optimization engine of the neural network architecture, the backpropagation

module, implements a gradient descend optimization strategy, the located optimum is usually

only a local optimum position. In the different optimization methods, some random relocation

steps are involved to give chance of a cost improvement in the undiscovered areas of the

optimization space. In the case of genetic algorithm, the following genetic operators are

utilized for stochastic steps:

• crossover: exchange of different sections of the feature vectors

• mutation: modification of some section of the feature vector

The proposed architecture contains a modified optimization engine which expands the

gradient descend approach with additional crossover and mutation operations. This

modification can improve the general efficiency of the embedded backpropagation engine.

We remark that one interesting consequence of the structural extension is that we have a

unique cost function run during the training, as is shown in Fig. 3.

Figure 3. Error function curve of the updated optimization engine.

26 László Kovács − Ali Jlidi

In the curve of the error function, we can see some peaks which mean the points we the search

jumped to a new position to start a new gradient descend process. At that step, we move from

a local optimum to another position with worse fitness, but later it will find a new local

optimum with better fitness.

In order to apply the proposed optimization engine for the TSP problem, we developed a

novel representation formalism for the TSP, where integer programming was replaced with

a real valued optimization model. In this representation format, the network consists of only

simple layers, where the network parameters, edge weights correspond to the relevance level

of the graph edges. High relevance means that the corresponding graph edge is part of the

Hamiltonian cycle.

4. TEST EXPERIMENTS

The implementation of the test environment was developed in the popular Python framework.

The neural network objects were built up with Tensorflow-Keras library. In this case, the NN

object can be constructed by adding the component layers to the current architecture in a

graph flow formalism. The main benefit of this approach is that is more flexible, and it

provides more functionality than the usual sequential network model.

inputs = Input(shape=(1,))

output = MG_SN_Layer(N_points,Dim,f_modelb,

activation='linear',name="mydense")(inputs)

mg_sn_model = Model(inputs, output)

mg_sn_model.compile(optimizer='sgd', loss='mse')

sprecbn =

CustomCallbackBN(N_points,Dim,Lcalc,Blen

In the new model, the calculation of the current cost (error) function depends on the problem

domain, thus a custom layer is needed to implement these calculations. As the next code

snippet shows, we can use the Tensorflow library to efficiently implement any calculations

within the custom layer.

def call (self,inputs):

t1 = tf.constant([0.3,0.7])

t2 = self.kernel - t1

t3 = tf.multiply(t2,t2)

t4 = tf.reduce_sum(t3,axis=0)

t5 = tf.constant([1.3])

t6 = t5 + t4

return t6

Regarding the test results, we can see that this approach provided superior efficiency

compared to the previous approaches, it generated very good approximations in the tested

cases with small and medium size networks. Figure 4 shows some key steps in the training

process to determine the winner cycle.

Neural networks for vehicle routing problem 27

Figure 4. The shape of the winner cycle in different epochs of the training.

5. CONCLUSION

The VRP and TSP are very important problem domains in transportation and logistics. Due

to the complexity of the problem, some kind of heuristics are used to solve the problems of

practical sizes. Beside the dominating conventional methods, like the Lin-Kernighan and

Helsgaun method, there is an increasing interest in application of so mind of machine learning

approaches. In this paper, we investigated the application potential of neural network

technology.

In the first approaches of NN-TSP integration, the Hopfield network was the dominating

architecture model, it provided the best efficiency. In the current years, the focus of the

research turned to the application of the graph neutral network architecture as TSP is defined

on graph structure. The performed analysis shows that the standard GNN model has a low

efficiency for TSP as it works with local optimization methods while TSP requires a global

optimization scope.

As novel approach, we presented an optimization-oriented network architecture which

implements a genetic algorithm optimization layer on the top of the standard gradient descend

method. The prototype of the proposed architecture was implemented with custom layer

elements of Tensorflow framework. The performed tests show that the proposed model

dominates the regular GNN-based approaches.

28 László Kovács − Ali Jlidi

REFERENCES

[1] Belhaiza, S., Hansen, P. & Laporte, G. (2014). A hybrid variable neighborhood tabu search

heuristic for the vehicle routing problem with multiple time windows. Computers & Operations

Research, 52, 269-281, https://doi.org/10.1016/j.cor.2013.08.010

[2] Tavares, J., Pereira, F. B. & Costa, E. (2008). Multidimensional knapsack problem: A fitness

landscape analysis. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),

38(3), 604-616, https://doi.org/10.1109/TSMCB.2008.915539

[3] Chen, H. K., Hsueh, C. F., & Chang, M. S. (2009). Production scheduling and vehicle routing

with time windows for perishable food products. Computers & operations research, 36(7), 2311-

2319, https://doi.org/10.1016/j.cor.2008.09.010

[4] Christofides, N. (1976). The vehicle routing problem. Revue française d'automatique,

informatique, recherche opérationnelle. Recherche opérationnelle, 10(V1), 55-70,

https://doi.org/10.1051/ro/197610V100551

[5] Bladimir, T. & Esztergár-Kiss, D. (2023). A review of metaheuristic algorithms for solving TSP-

based scheduling optimization problems. Applied Soft Computing, 148, 110908,

https://doi.org/10.1016/j.asoc.2023.110908

[6] de la Vega, W. F. & Karpinski, M. (1999). On the approximation hardness of dense TSP and

other path problems. Information Processing Letters, 70(2), 53-55,

https://doi.org/10.1016/S0020-0190(99)00048-4

[7] Agárdi, A. (2023). The generalization of the Vehicle Routing Problem: Mathematical model,

ontology, algorithms, fitness landscape analysis and applications. Doctoral dissertation,

University of Miskolc

[8] Cordeau, J. F., Laporte, G. & Mercier, A. (2001). A unified tabu search heuristic for vehicle

routing problems with time windows. Journal of the Operational research society, 52(8), 928-

936, https://doi.org/10.1057/palgrave.jors.2601163

[9] Ai, T. J. & Kachitvichyanukul, V. (2009). A particle swarm optimization for the vehicle routing

problem with simultaneous pickup and delivery. Computers & Operations Research, 36(5), 1693-

1702, https://doi.org/10.1016/j.cor.2008.04.003

[10] Tunjongsirigul, B. & Pongchairerks, P. (2010). A genetic algorithm for a vehicle routing problem

on a real application of bakery delivery. In 2010 2nd International Conference on Electronic

Computer Technology (IEEE), 214-217, https://doi.org/10.1109/ICECTECH.2010.5479956

[11] Helsgaun, K. (2015). Solving the equality generalized traveling salesman problem using the Lin–

Kernighan–Helsgaun algorithm. Mathematical Programming Computation, 7, 269-287,

https://doi.org/10.1007/s12532-015-0080-8

[12] Akyol, D. E. (2004). Application of neural networks to heuristic scheduling algorithms.

Computers & Industrial Engineering, 46(4), 679-696, https://doi.org/10.1016/j.cie.2004.05.005

[13] Shi, Y. & Zhang, Y.: The neural network methods for solving Traveling Salesman Problem.

Procedia Computer Science, 199, 681-686, https://doi.org/10.1016/j.procs.2022.01.084

[14] Abdel-Moetty, S. M. (2010). Traveling salesman problem using neural network techniques. In

The 7th International Conference on Informatics and Systems (INFOS) IEEE, 1-6.

[15] Prates, M., Avelar, P. H., Lemos, H., Lamb, L. C. & Vardi, M. Y. (2019). Learning to solve np-

complete problems: A graph neural network for decision tsp. In Proceedings of the AAAI

Conference on Artificial Intelligence, 33(1), 4731-4738,

https://doi.org/10.1609/aaai.v33i01.33014731

[16] Deudon, M., Cournut, P., Lacoste, A., Adulyasak, Y. & Rousseau, L. M. (2018). Learning

heuristics for the tsp by policy gradient. In Integration of Constraint Programming, Artificial

Intelligence, and Operations Research Proceedings 170-181, https://doi.org/10.1007/978-3-319-

93031-2_12

[17] Potvin, J. Y. (1993). State-of-the-art survey—the traveling salesman problem: A neural network

perspective. ORSA Journal on Computing, 5(4), 328-348, https://doi.org/10.1287/ijoc.5.4.328

https://doi.org/10.1016/j.cor.2013.08.010
https://doi.org/10.1109/TSMCB.2008.915539
https://doi.org/10.1016/j.cor.2008.09.010
https://doi.org/10.1051/ro/197610V100551
https://doi.org/10.1016/j.asoc.2023.110908
https://doi.org/10.1016/S0020-0190(99)00048-4
https://doi.org/10.1057/palgrave.jors.2601163
https://doi.org/10.1016/j.cor.2008.04.003
https://doi.org/10.1109/ICECTECH.2010.5479956
https://doi.org/10.1007/s12532-015-0080-8
https://doi.org/10.1016/j.cie.2004.05.005
https://doi.org/10.1016/j.procs.2022.01.084
https://doi.org/10.1609/aaai.v33i01.33014731
https://doi.org/10.1007/978-3-319-93031-2_12
https://doi.org/10.1007/978-3-319-93031-2_12
https://doi.org/10.1287/ijoc.5.4.328

Neural networks for vehicle routing problem 29

[18] Talaván, P. M. & Yáñez, J. (2002). Parameter setting of the Hopfield network applied to TSP.

Neural Networks, 15(3), 363-373, https://doi.org/10.1016/S0893-6080(02)00021-7

[19] Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., ... & Sun, M. (2020). Graph neural

networks: A review of methods and applications. AI open, 1, 57-81,

https://doi.org/10.1016/j.aiopen.2021.01.001

[20] GNN for Shortest Path with Tensorflow-GNN, Retrieved from

https://github.com/tensorflow/gnn/blob/main/examples/notebooks/graph_network_shortest_path

.ipynb (2024)

[21] Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R., Leskovec, J. & Battaglia, P. (2020).

Learning to simulate complex physics with graph networks. In International conference on

machine learning, PMLR, 8459-8468.

[22] Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski, M.

& Pascanu, R. (2018). Relational inductive biases, deep learning, and graph networks. arXiv

preprint arXiv:1806.01261.

https://doi.org/10.1016/S0893-6080(02)00021-7
https://doi.org/10.1016/j.aiopen.2021.01.001

