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Abstract: Production planning is critical in modern industry, especially in custom machine 
manufacturing, where efficiency and meeting deadlines are essential. Time series analysis has become 
pivotal in optimizing production systems in recent years. This study presents the application of LSTM 
neural networks for production scheduling predictions, modelling temporal patterns and seasonal 
fluctuations based on historical data. The goal is to enable more efficient planning and accurate 
delivery times, thereby improving overall production performance. Preliminary results suggest that 
LSTM can outperform traditional statistical models, such as linear regression. It is crucial to tailor the 
model to the company's specific needs and relevant data. 
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1. INTRODUCTION 
 

With the growth of the economy, optimization and forecasting are playing an increasingly 

important role in production logistics. In a competitive market, those with more accurate 

forecasts gain an advantage. Within production, the coordination of transportation tasks with 

manufacturing is becoming increasingly critical. Production planning plays a key role in 

modern industrial systems, as it directly impacts efficiency, costs, and the optimal use of 

resources. The constant changes in globalized markets and fluctuating demand place 

increasing pressure on the development of forecasting methods. 

Traditional forecasting techniques, such as time series analysis or linear regression, often 

struggle with limited accuracy when facing complex, nonlinear patterns observed in 

manufacturing and logistics systems. The main challenge is that tasks requiring solutions are 

often too complex for simple dynamic algorithms. In our rapidly evolving world, production 

scheduling is a field fraught with challenges, requiring greater attention to coordination, 

including communication between machines as robots become more prevalent. In a dynamic 

environment, with numerous human factors, adopting a flexible problem-solving approach is 

essential. Large companies process vast amounts of data within enterprise resource planning 

systems, ensuring that everyone works within a unified platform and has real-time 

information on internal and external factory changes. Forecasting plays a crucial role in 

ordering components ahead of customer requests, anticipating future needs. This allows for 

more efficient planning and preparation for upcoming demands. Securing a competitive 

advantage often depends on completing orders earlier than rival companies. 

In recent decades, significant advancements in artificial intelligence and machine learning 

have opened new opportunities for optimizing production planning. LSTM (Long Short-

Term Memory) neural networks have proven particularly effective in time series forecasting, 

as they can manage long-term temporal dependencies critical for understanding the dynamic 

patterns of manufacturing processes. The deep neural architecture of LSTM models enables 
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the detection of complex trends and seasonal effects that are challenging for traditional 

methods to capture. Implementing LSTM-based forecasting methods is especially beneficial 

when production systems require not only predictions of current demand or production 

volumes but also more accurate estimates of future inventory needs and resource utilization. 

The model's flexibility and learning capabilities offer a significant advantage in Industry 4.0 

environments, where real-time data processing and adapting to dynamically changing 

production conditions are essential for maintaining competitiveness [1, 2]. 

The aim of this study is to present the advantages and challenges of applying the LSTM 

model in production planning and customer order forecasting. Forecasting based on time 

series data enables the fine-tuning of manufacturing processes, thereby reducing inventory 

costs and increasing productivity. The research focuses on examining the accuracy and 

robustness of the LSTM model, with particular emphasis on production data characterized 

by long-term dependencies and nonlinear patterns. 

 

2. LITERATURE REVIEW 
 

The exploration of integrating artificial intelligence (AI) techniques and applications in 

industrial production and logistics has advanced significantly in recent years. Special 

attention is given to optimizing production systems, demand forecasting, developing decision 

support systems, and applying various algorithms and models to effectively predict electricity 

consumption, highlighting the comparison of model performance using real-world data [3-

5]. In the rapidly evolving field of logistics, particularly in e-commerce, efficient task 

scheduling and resource allocation have become critical factors for operational success. 

Advanced AI techniques, especially deep learning models such as LSTM networks, are 

increasingly recognized as viable solutions for addressing complex challenges in intelligent 

logistics systems. 

Since the late 2010s, the examination of LSTM models has become widespread due to 

their success in delivering accurate forecasts. Models incorporating state-of-the-art 

technologies began to emerge, emphasizing AI-based solutions. These models focus heavily 

on deep learning [4, 6-8]. The LSTM model is increasingly recommended over ARIMA 

(autoregressive integrated moving average) [9-11]. According to [10], the LSTM model 

operates with a 22% error rate, while ARIMA shows a 34% deviation on the same dataset. 

The study by Changchun L. et al. (2022) emphasizes the necessity of innovative logistics 

models that enhance efficiency through intelligent scheduling systems. These models not 

only optimize resource management but also improve service quality, addressing the growing 

demand for accurate and reliable deliveries [12]. Similarly, the research by Issaoui Y. et al. 

(2021) supports this need for efficiency by proposing an LSTM-based approach that enables 

dynamic scheduling and efficient resource allocation, ultimately improving customer 

satisfaction and operational performance in smart logistics frameworks [13]. 

Ketan R. (2020) highlights the importance of employing AI-driven strategies to optimize 

logistics processes and support sustainable practices. Their findings advocate for the 

development of intelligent scheduling algorithms that can adapt to changing market demands, 

ensuring that logistics systems remain agile and responsive [14]. Likewise, the work of Salah 

B. et al. (2018) underscores the importance of optimizing logistics activities through machine 

learning techniques, demonstrating significant improvements in task scheduling and resource 

efficiency [15]. 
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Together, these studies shed light on the transformative potential of LSTM and other AI 

methods in reshaping logistics operations, paving the way for smarter, more efficient systems 

that not only meet but exceed the ever-evolving expectations of customers and businesses 

alike [16, 17]. 

 

3. EXPLANATION OF LSTM MODEL 
 

LSTM networks are a specialized type of recurrent neural networks (RNNs). RNNs were 

originally developed to account for temporal sequences in problems such as speech 

recognition, language modelling, or time series forecasting. However, RNNs were limited in 

their ability to effectively handle long-term dependencies due to the so-called "vanishing 

gradient" problem, where the significance of information from earlier steps gradually 

diminishes during training. LSTM networks addressed this issue with their unique 

architecture. 

We chose this model because research has demonstrated its success across various fields 

in generating accurate forecasts on large datasets. Additionally, it is well-suited for 

identifying the long-term dependencies necessary for production planning. In industry, 

numerous periods or factors need to be considered, such as planting, harvesting, Easter, 

Christmas, New Year's Eve, economic trends, and different weather conditions [18, 19]. 

 

 

Figure 1. Basic model of LSTM 

Fig. 1 illustrates a feedback loop, where the calculated forecast is fed back into the system to 

enable processing based on these calculated data points. This feedback mechanism is crucial 

as it allows the system to account for data that are not yet available at the time of forecasting. 

Based on this, the key components can be defined as follows: 

 

1. Input 

The input typically consists of time series data, where temporal order and historical data 

significance are critical. Time series data generally comprise timestamped measurements, 

such as production volume, resources, capacity, or delivery dates recorded during a 

manufacturing process. The input can be visualized as a multidimensional matrix, where 

observations corresponding to different time points are used in the modelling process. It is 

essential to arrange the data in chronological order before use, as the model relies on indexing 

to process data according to their respective timestamps [20]. 

 

2. Representation 

The internal structure of LSTM models is complex, representing input data through 

specialized memory cells. These memory cells are capable of retaining long-term temporal 

dependencies while filtering out irrelevant information from noisy data: 
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• Input Gate: Controls how much of the current input influences the memory cell's 

state. 

• Forget Gate: Determines which past states should be forgotten or retained. 

• Output Gate: Regulates how much of the current state contributes to the output and 

what information flows into the next steps. 

 

The data representation within LSTM is a dynamically evolving memory state that captures 

long-term patterns while eliminating short-term noise [12, 21, 22]. 

 

3. Processing of Data 

Data are processed step by step in temporal order. At each time step (e.g., a day, hour, or 

minute), the LSTM cell receives a new input and updates the state of its memory cells. This 

process is governed by the LSTM’s gates, which filter the data and enable the model to learn 

which patterns are critical for forecasting and which can be disregarded. 

The primary advantage of LSTM over other neural networks is its ability to handle long-

term dependencies. This is particularly important for production data, where the production 

volume of a specific month may depend on processes spanning longer periods, not just recent 

results [9, 23]. 

 

4. Prediction 

After processing the inputs, the model transitions to the prediction phase. The output layer 

can be a fully connected neural layer that forecasts the next value or values in the time series. 

Prediction possibilities include: 

• Single Data Point Prediction: Forecasting a specific future time point, such as the 

production volume for the next week or month. 

• Multi-Step Prediction: Using the LSTM model to predict several steps ahead, such 

as daily production volumes for the next month or estimated production 

capacity/product quantities over multiple months. 

 

The forecasts are generated based on learned patterns and the information retained in the 

memory cells. Predictive performance is critical for industrial applications such as production 

process optimization, inventory management, or demand forecasting [24-27]. 

 

5. Output 

Finally, the LSTM model delivers the prediction through the output layer. The output can be 

a scalar value, such as the production volume for a specific day, or a sequence if multiple 

future points need to be forecasted. The following figure details how the LSTM model 

generates predictions [28]. 

 

Fig. 2 illustrates how temporal dependencies are divided into seasons based on the source of 

the data. All incoming data are aggregated into an "i-th hour" table, which then moves to a 

decision-making phase. At this point, the system receives an instruction either to stop, as the 

desired value has been reached, or to return to the beginning of the LSTM model. 
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Figure 2. LSTM Model Forecasting Process [21] 

4. TESTING THE LSTM MODEL 
 

For testing, we used a standard home computer with the following specifications: 

• Processor: AMD Ryzen 7 5700X3D 

• Graphics Card: RTX GeForce 4070 Ti 12GB GDDR6X 

• RAM: 32 GB GDDR4 

 

We successfully built a functioning model in which the program was tested based on various 

parameters, achieving successful predictions. The program was developed in Python, 

following the aforementioned research [29]. 

The base dataset is defined as follows. 

 

 

Figure 3. Main part of testing dataset 

Fig. 3 depicts yearly shipments, where Fibonacci numbers were used for simplicity. The test 

dataset contains far more data and spans more than one year. 

The data represent the production or shipment dates of a product. For instance, "Item A" 

can be represented as having 0 shipments in January 2023, 1 in February, and so forth. The 

following results were obtained for the (1-6) time series: 
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Table I. 

Sampling and Results 

 
 

In Table I., discrepancies are highlighted in orange, indicating areas where the model's 

accuracy can be assessed. It is evident that for forecasting 6 time series, a sample size of 

3,000 was sufficient. However, when forecasting more time series, discrepancies began to 

appear—this was tested on the 7th element, where accurate results were not always obtained. 

With a sample size of 30,000, we successfully analysed up to 12 time series. 

The system produces more accurate forecasts as it processes more samples. Data rounding 

was implemented within the program code, where values above 0.5 were rounded up and 

those below were rounded down. Regarding the volume of data examined on the time axis, 

we concluded that setting at least 2 time points was sufficient for this simple model; further 

increases did not improve the forecast. 

The depth of the neural network was tested with between 1 and 200 neurons, but no 

significant changes were observed. A definitive conclusion is that increasing the number of 

neurons should be paired with an increase in sample size. 

For the forget gate, a 10% value was set, meaning the model "forgets" 10% of the data. 

This is a random algorithm that could be further optimized. Guidelines for setting the main 

parameters are provided in [30], but these configurations did not perform adequately in our 

model. 

 

 

Figure 3. Settings of LSTM parameters [30] 

4.1 Advantages and Disadvantages of the LSTM Model 
 

This chapter presents the advantages and disadvantages of the LSTM model, highlighting 

various factors that influence its applicability and efficiency in different forecasting tasks. 

Advantages: 

1. Handling Time-Dependent Data and Long-Term Trends: One of the key benefits 

of the LSTM model is its ability to connect multiple years of data and draw 

Sampling 
Size 

(pcs)

13th 
Element

14th 
Element

15th 
Element 

16th 
Element 

17th 
Element 

18th 
Element 

Average 
Execution 

Time (s)

30 144 233 376 601 966 1512 17
300 144 233 377 610 985 1590 19

3000 144 233 377 610 987 1597 65
30000 144 233 377 610 987 1597 645



Application of LSTM model for forecasting production order                             117 

parallels between two datasets, ensuring long-term dependencies. The model 

performs exceptionally well in managing time-dependent, sequential data, 

making it ideal for production scheduling, where past production patterns may 

influence future outcomes [31-33]. 

2. Modelling Nonlinear Relationships: LSTM models are effective in handling 

complex, nonlinear relationships, which are common in production planning, 

such as the interplay between production cycles and demand fluctuations. 

3. Handling Incomplete Data: LSTM models can process incomplete or noisy 

datasets, which are often encountered in manufacturing environments. It is 

important to note, however, that care should be taken when setting missing 

values to zero, as this does not necessarily indicate the absence of data [33, 34]. 

 

Disadvantages: 

1. Data Intensity: The primary drawback, which we experienced firsthand, is that 

a relatively large amount of data is required to achieve accurate results. This can 

be a challenge if sufficient data is unavailable. Incorporating experiential 

insights into analyses can help address this issue [35, 36]. 

2. Slow Learning Process: The training process can be time-consuming, 

particularly with large datasets or complex models, potentially delaying design 

cycles. As seen in our example, even with relatively small data, many samples 

were needed. For datasets containing millions of records, training could take an 

estimated 1-2 weeks [21, 5]. 

3. Risk of Overfitting: Due to its ability to detect complex patterns, there is a 

significant risk of overfitting the existing data, leading to inaccurate forecasts if 

future patterns differ from historical data [30, 37, 38]. 

4. Operational Complexity: Operating and fine-tuning LSTM models can be 

complicated, especially in environments lacking appropriate technical expertise. 

It is important to note that this procedure requires a properly trained professional 

[9, 20, 39]. 

 

5. DEVELOPMENT SUGGESTIONS 
 

One of the key areas of focus for us is how to accelerate computations without involving 

additional resources. Hybrid models that combine convolutional neural networks with LSTM 

models exist, and our research suggests that with appropriate parameter tuning, faster results 

can be achieved [11, 14, 40, 41]. 

There is no specific guideline on how to perform sampling with our data. Determining 

the model’s reliability relies on experience and experimentation, but optimization can be 

cumbersome and time-consuming, especially when only a three-month forecast is required. 

[42, 43]. 

Initially, when the model was operational but not fully developed, we were unable to 

effectively verify whether the program was functioning as expected. We also encountered 

issues with faulty sample handling, where an input error resulted in inaccurate data. 

Configuring adjustable and customizable parameters required considerable effort and 

experimentation. 

We had to abandon the random selection algorithm at the forget gate to ensure no data 

was removed. The model is not yet considered fully optimized, as hybrid models have already 

shown advancements, demonstrating that further optimization of predictions is possible. 

However, achieving this requires sufficient high-quality data [12, 18, 28, 29, 30, 5]. 
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In our opinion, hybrid models such as CNN-LSTM (Convolutional Neural Network - Long 

Short-Term Memory) and ARIMA-LSTM represent promising directions for enhancement. 

CNN-LSTM combines the strengths of convolutional neural networks and LSTMs, 

improving the model’s ability to simultaneously manage both local dependencies and long-

term temporal patterns. Meanwhile, ARIMA-LSTM integrates statistical methods with 

neural networks, offering superior accuracy in forecasting complex and nonlinear trends. 

These hybrid approaches could address some of the existing limitations while unlocking new 

possibilities for robust and efficient predictive modelling in production and logistics contexts 

[43]. 

Reinforcement Learning can also be utilized for tasks involving dynamic optimization, 

offering a way to improve decision-making in production planning through trial-and-error 

interactions with the system. This adaptive approach allows the model to learn optimal 

strategies over time by directly interacting with the environment and observing the results of 

its actions. However, this method is not without challenges, as it requires a well-designed 

simulated environment to test and train the system effectively. Creating such an environment 

is computationally intensive, demanding significant resources, which may limit its 

practicality in some scenarios. Furthermore, ensuring that the simulated environment 

accurately mirrors real-world conditions is essential to avoid discrepancies in performance 

when applied in practice. 

In addition, we are also considering two simpler machine learning models that could 

deliver comparable results while being less resource-intensive [44]: 

• Gated Recurrent Units (GRUs): As a more straightforward alternative to LSTMs, 

GRUs retain the ability to model sequential data effectively while requiring less 

computational power. Their streamlined architecture makes them particularly 

appealing for applications where efficiency and speed are critical, and their simpler 

design often leads to faster training times without a significant loss in accuracy. 

• Bayesian Neural Networks (BNNs): These models stand out for their ability to 

incorporate uncertainty into predictions, making them especially well-suited for 

highly volatile and uncertain environments, such as those found in production and 

logistics. By quantifying the confidence of predictions, BNNs offer an additional 

layer of robustness, which can be invaluable when making decisions based on 

incomplete or noisy data. 

 

Both of these approaches hold promise for improving predictive performance in production 

planning scenarios, particularly where computational resources or data availability may be 

limited. Their respective strengths also make them strong candidates for integration into 

hybrid modelling strategies, potentially enhancing the adaptability and precision of 

forecasting systems even further. 

Lastly, there are additional helper algorithms rather than standalone models that can 

significantly improve solution generation and enable faster convergence. These include [45]: 

• Gradient Boosting Models (e.g., XGBoost, LightGBM): These tree-based ensemble 

models are highly effective for structured data and serve as an excellent alternative 

for non-sequential datasets. Additionally, they can be combined with neural 

networks to create hybrid models, leveraging their strengths for enhanced 

performance in specific tasks. 

• Kalman Filters: A traditional yet powerful tool, Kalman Filters remain useful for 

dynamic systems requiring sequential prediction, particularly in real-time 
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applications. Their ability to handle noisy and incomplete data makes them an 

enduring choice for real-world implementations. 

• Attention Mechanisms: By focusing on the most relevant parts of the input sequence, 

attention mechanisms significantly enhance the performance of both Recurrent 

Neural Networks (RNNs) and Transformer architectures. This targeted approach 

improves predictive power, especially for tasks involving complex patterns and 

long-term dependencies. 

 

These algorithms, while not standalone models, can be integrated into broader AI systems to 

augment their efficiency, accuracy, and adaptability in solving challenging predictive tasks. 

In logistics and production scheduling and procurement, leveraging advanced AI 

techniques like LSTMs, GRUs, and hybrid models such as CNN-LSTM can greatly enhance 

predictive accuracy and operational efficiency. These methods effectively handle temporal 

dependencies, nonlinear relationships, and volatile data, making them ideal for dynamic 

environments. Helper algorithms like Gradient Boosting Models and Kalman Filters, 

combined with mechanisms like attention, further optimize solutions by refining data 

handling and focusing on critical inputs. Despite challenges such as computational intensity 

and data requirements, these tools pave the way for more precise demand forecasting and 

resource planning. Ultimately, adopting these innovations can streamline operations, reduce 

costs, and ensure a competitive edge in modern production and logistics systems. 

 

6. CONCLUSION 
 

Based on the work presented, it can be concluded that LSTM models are promising tools for 

analysing and forecasting temporal data, particularly in production processes where long-

term trends and patterns need to be considered for efficient planning. Both theoretical and 

practical examples of this have been provided. 

Continuing this research and further developing the models could contribute to improving 

predictive performance and increasing production efficiency. Development suggestions 

include exploring ways to accelerate computations, such as implementing hybrid models that 

combine convolutional neural networks with LSTM architectures. It is also important to 

address the challenges of optimization, as customizable parameters and issues with faulty 

sample handling can significantly impact the model's performance. As a continuation of this 

research, advanced AI models and helper algorithms, such as LSTMs, GRUs, hybrid CNN, 

Gradient Boosting, and attention mechanisms, can enable precise demand forecasting, 

efficient resource planning, and streamlined operations, effectively addressing the 

complexities of logistics, production scheduling, and procurement in dynamic environments. 
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