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MODELLING AND SOLVING TRANSPORTATION PROBLEMS AS A
DECISION SUPPORT TOOL IN LOGISTICS PROCESS DESIGN AND
OPTIMIZATION

BOGLARKA ESZTER ZELENA! - TAMAS BANYAI2

Abstract: This paper provides a comprehensive overview of classical and extended transportation
problem-solving methods. It introduces well-known algorithms such as the North-West Corner Method,
Least Cost Method, Vogel’s Approximation Method, and the Simplex Method. The paper also presents
real-world application areas, including home delivery of e-commerce packages, transportation of
medical equipment and pharmaceuticals, transportation of fresh food products. Practical examples
illustrate how these models function in real industrial contexts. Beyond the classical transportation
model, the study explores its extensions by incorporating capacity and time constraints. These extended
models are analyzed to understand their impact on cost and solution structure. The findings highlight
the trade-offs between model complexity and operational feasibility in real-world transportation
planning.

Keywords: transportation problem, North-West Corner Method, Least Cost Method, Vogel'’s
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1. INTRODUCTION

Transportation problems constitute an essential part of the design tasks within material flow
systems. Therefore, this chapter briefly reviews the main design tasks, following the
framework outlined by Cselényi & Il1és [1]. The design of material flow systems inherently
involves the placement of factories, warechouses, and machines or storage units within a
facility. When determining the location of such units, multiple criteria must be considered,
and often more than one feasible solution may exist. Additionally, from an operational cost
perspective, material handling cost and workload are critical factors. Therefore, among the
possible facility layout and placement plans, those should be selected that meet the specified
requirements and are optimal from the perspective of the material flow system.

The design models for the installation of machines and equipment can be categorized into
two main groups: based on the shape of the objects to be placed, and whether the planning
process is simple or integrated. The key difference between simple and integrated layout
planning lies in their scope: in simple layout planning, only the assignment of objects to
facility locations is carried out based on a given distance matrix; whereas in integrated
planning, the material handling equipment is also selected, the transport paths are defined,
and only then are the objects assigned to the appropriate facility locations.

Route planning involves determining optimal paths to ensure efficient material handling.
Nowadays, the importance of forklift route planning is increasing, as significant cost savings
can be achieved by designing optimal transport routes. A current trend is the retrofitting of
traditional forklifts with automation capabilities, enabling either offline or online operation
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modes. This allows them to communicate with the computer systems controlling the logistics
processes and the company’s enterprise information system.

Driverless forklift systems (Automated Guided Vehicles, AGVs) can also be
implemented, in which case route planning becomes particularly critical — especially when
coordinating the operations of many AGVs.

The design of forklift-based material flow systems includes several elements: defining
the boundaries of the material flow system, constructing the distance matrix, analyzing unit
load formation, selecting the appropriate forklift type, designing loading/unloading stations,
planning the forklift routes, determining the number of forklifts and unit loads required, and
developing the forklift control system.

Route planning must take into account the intensity of material flow, the available fleet
of forklifts, different types of transport routes, the forklifts’ loading capacities, waiting times,
and time constraints tied to specific operations.

Unit loads formed from individual items play a crucial role in facilitating the flow of
materials and goods within logistics systems. Typically, a unit load (UL) refers to a grouping
of materials or products placed on a unit load forming device (ULFD), which is then handled
as a single entity throughout the logistics processes. Thus, the concept of a unit load
inherently includes the product or material itself as well as the device that forms and supports
the unit.

The functions and design of unit loads are always aligned with the logistical requirements
of production and service processes. Unit loads can be classified according to various criteria,
such as their content, function, or place of use. Based on their content, unit loads can be
homogeneous, heterogeneous, or multi-level. According to their function, they may serve as
RST (storage and transport) or technological unit loads. From the perspective of their
application, they can be associated with procurement, distribution, production, or recycling
processes.

The objective is to determine the number of devices required within a logistics system.
To do this, it is important to consider that some material flow systems consist of machines
operating in an intermittent or cyclical manner. Such machines result in discontinuous
material flow. They operate in work cycles, meaning they can transport a specified quantity
of material from the loading point to the unloading point during each cycle.

Before selecting an intermittently operating device, one must consider its mobility, as the
equipment can either be mobile or stationary (fixed installation). The performance of
intermittent transport systems depends on several factors: the weight of the load, the transport
distance, and the intensity of material movement.

The reliability with which a material flow task can be carried out is one of the most critical
evaluation criteria. Enhancing this reliability requires consideration of several factors, such
as whether the material handling equipment operates in a continuous or intermittent mode.
The degree and sophistication of mechanization also play a significant role, as human-related
uncertainty cannot be disregarded.

To determine the reliability characteristics of system components, the calendar operating
time must be used as the basis of analysis. In material handling systems, direct or indirect
connections often exist between storage units and equipment, which can result in system-
wide shutdowns if a single component fails.

There are various types of reliability models used to analyze such systems, including
series models, parallel models, hybrid connection models, bridge connection models, and k-
out-of-n (KooN) models [2].
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The essence of the assignment problem lies in assigning m resources to n tasks in such a way
that the defined objective function reaches its optimal value. In assignment problems, typical
objective functions include cost minimization, efficiency maximization, or defect rate
minimization [3]. It is essential that each resource is assigned to exactly one task, and each
task is performed by exactly one resource. Furthermore, the assignment costs must be known
in advance. Naturally, instead of cost, the objective function can be based on productivity
indicators, defect ratios, or other quality metrics [4].

In practice, assignment problems are frequently used to allocate machines or operators to
workpieces or tasks.

In contrast, the transportation problem aims to determine the optimal distribution of
goods, where multiple production or supply sites must deliver to several demand points, such
that the total transportation cost is minimized while satisfying supply and demand constraints.
The problem assumes that each source has a defined supply, each destination has a specific
demand, and the transportation costs between each source and destination are known.
Practical applications include material movement between production, warehouses, and
customers, or the optimization of raw material supply chains [5].

2. TRANSPORTATION AND ASSIGNMENT PROBLEMS

The core concept of the assignment problem is to allocate m resources to n tasks in such a
way that a defined objective function reaches its optimum. In this context, the objective may
be the minimization of cost, the maximization of efficiency, or the minimization of defect
rates [3]. It is crucial that each resource is assigned to only one task, and each task is handled
by only one resource. Additionally, the assignment costs must be known in advance.
Naturally, instead of cost, the objective function can also be based on other metrics such as
productivity indicators, defect rates, or other quality-related measures [4].

In practical applications, assignment problems are commonly used for matching
machines or operators to workpieces or tasks. The goal of the transportation problem is to
determine the optimal distribution of goods such that products are shipped from multiple
production sites to multiple demand points while minimizing total transportation costs, and
at the same time satisfying all supply and demand requirements. The problem assumes that
each source has a specific supply, each destination has a defined demand, and the
transportation costs between sources and destinations are known. This model can be applied,
for example, in the movement of goods between production facilities, warehouses, and
customers, or in the optimization of raw material supply chains [5].

2.1. Mathematical description of transportation problems

When formulating the optimization model of transportation problems, it is necessary to
define the following key model elements [6]:
e input parameters,
objective function(s),
constraints, including any potential sign restrictions,
decision variables.

In general, the input parameters of transportation problems include the distances or
transportation costs between each pair of nodes (relations), the available supply at each
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source, and the demand at each sink (destination). Let y,,,, denote the transportation distance
or cost between supply point # and demand point j. Let u=1...m represent the supply nodes
(sources) and v=1...n represent the demand nodes (sinks). Then, the objective function of the
transportation problem — which aims to minimize the total transportation cost or total
transportation distance — can be expressed as follows:

m n
C = ZZ)/W * Xy = min., )

u=1v=1

where C denotes the objective function to be optimized, and x,, represents the decision
variable of the optimization problem, which satisfies the following conditions:

Vu,v:x, €R 2)

In transportation problems, two key constraints must be defined. The first constraint relates
to supply and ensures that no supply point can ship more than its available capacity. This
condition can be formulated as follows:
n
v z Xuy <7 3)
v=1
where 1, is the amount of product available at supply point u (supply constraint).
The second constraint refers to demand and ensures that no demand point receives less
than its required quantity; in other words, all demand must be fully satisfied:
m
RS @
u=1
where p,, is the demand at demand point v (demand constraint).
If the total supply equals the total demand, the problem is referred to as a balanced
transportation problem. In this case, the general model defined by equations (1—4) can be
expressed in the following form:

m n
C= Z Zyuv * Xy = min., %)

u=1v=1
m n
Z h = Z Py, (6)
u=1 v=1
n
Vu: Z Xyy = T, @)
v=1
m

Vv Z Xyv = Dy- (3
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2.2. Balancing of transportation problems

If the transportation problem is unbalanced, two cases can be distinguished:
¢ in the first case, the total supply exceeds the total demand, while
¢ in the second case, the total demand exceeds the total supply.

2.2.1. Balancing a transportation problem when total supply exceeds total demand. In
this case, the transportation problem can be balanced by introducing a virtual demand point
whose demand is exactly equal to the surplus supply. If the transportation cost to this dummy
demand point is set to zero from all supply points, the unbalanced transportation problem is
transformed into a balanced one.

If the transportation problem is unbalanced and total supply exceeds total demand, it can
be formulated with the following condition:

i T > zn: Dy- )
v=1

u=1

In this case, the introduction of the virtual demand point can be defined in the following form:

m n
Prii= ) 1= ) o (10)
v=1

u=1

2.2.2. Balancing a transportation problem when total demand exceeds total supply.
There is no feasible solution to this problem, as it is not possible to satisfy all demand due to
limited supply. However, in order to make the transportation problem solvable (even if not
all demand is fulfilled), a virtual supply point can be introduced. This point does not exist in
reality and does not provide actual goods, but it allows the transportation problem to be
balanced. In such cases, unmet demand may incur a penalty cost.

If the transportation problem is unbalanced and total demand exceeds total supply, this
condition can be formulated as follows:

iru<zn:p,,. (11)

u=1 v=1
The introduction of the virtual supply point can then be defined in the following form:

m
=1

n
Tm+1 = va - Z Tu- (12)
v=1 u

2.3. Application areas of transportation problems

Transportation problems have numerous application areas, some of which are discussed in
this chapter.

2.3.1. Home delivery of e-commerce packages. Courier and postal services have long-
established delivery systems that have evolved into a standalone industry. Initially, online
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shops delivered ordered packages to customers through the national postal service, typically
with a turnaround of several days. Today, specialized logistics companies like GLS, DPD, or
ExpressOne enable much faster delivery — often within 1-2 days — complemented by parcel
locker or pickup point options.

From a mathematical standpoint, the operation of courier services can be interpreted as
solving classic transportation problems. In such scenarios, packages must be transported from
various warehouses or distribution centers to customers or pickup points in a way that:

e accounts for the available supply (capacity) at the source points (warehouses),

o satisfies the demand at the destinations (customers or pickup points),

e considers transportation costs associated with each delivery route (e.g., distance,
time, fees),

e minimizes the total transportation cost [7].

For international deliveries, the transportation task becomes multi-stage: packages pass
through distribution hubs in several countries, which can be modeled as a sequence of
interdependent transportation problems.
Additional complexities for logistics providers include:
e Time windows: Deliveries must occur within specific time intervals, turning the
problem into a time-constrained transportation task.
e Returns management: Undelivered packages need to be sent back, generating a
reverse transportation problem, where destinations and sources switch roles.
e Multiple delivery attempts: Failed deliveries trigger repeated attempts, adding extra
transportation costs that must be optimized at the system level.

In summary, modern courier and parcel delivery systems are built on dynamic and complex
variations of classical transportation optimization problems. These systems must consider
not only cost minimization but also temporal and capacity constraints [8, 9].

2.3.2. Transportation of Medical Equipment and Pharmaceuticals. The transportation of
medical devices and pharmaceuticals is governed by strict regulations to ensure the safety,
quality, and efficacy of the products. Throughout the logistics process, it is essential to
maintain continuous tracking, perform regular checks, and keep accurate documentation.
This is particularly critical for temperature-sensitive or specially-handled medications, where
maintaining appropriate environmental conditions - such as a consistent cold chain - is vital.
From a mathematical perspective, these transportation processes can be modeled using
the framework of classical transportation problems [10]. In such cases, the objective is to
transport medical equipment or pharmaceuticals:
e from various production sites or warehouses (sources),
¢ to hospitals, pharmacies, or healthcare centers (destinations),
in a way that:
e respects the available stock at each source (supply),
o fulfills the demand at each destination, and
e considers the transportation costs on each route (which may include additional fees
for refrigerated or special handling),
while minimizing total transportation cost and fully satisfying all demands [11].
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Special attention must be given to the following factors:

e Cold chain logistics requirements: Some destinations only accept deliveries via
refrigerated transport. These routes can only be served using specialized vehicles,
adding constraints and potential cost increases to the transportation model.

e Special handling requirements: Certain medicines require expedited delivery or
specific handling conditions, which must be factored into the cost function as
penalties or additional costs.

e Dual cost structures: Standard and special shipments often have different pricing
schemes. This must be accounted for when developing an optimal transportation
plan.

In summary, the distribution of medical products constitutes a complex transportation
problem where strict adherence to handling conditions is just as critical as cost minimization
during the optimization process [12].

2.3.3. Transportation of Fresh Food Products. The planning of fresh food transportation
depends on several factors, such as which products are in short supply at specific retail
locations, and from which sources these products can be procured and at what distance. In
mathematical terms, the distribution of food products can be modeled as a classic
transportation problem [13]. The objective is to:

e transport food products from various production sites, warehouses, or wholesale
distribution centers (sources),

e to retail stores or final points of sale (destinations),

in a way that takes into account the available quantities at the sources (supply), satisfies
the demand at the stores, and minimizes the total transportation cost associated with each
route (including distance, transit time, and any special transport requirements) [14].

This problem becomes more complex due to the following considerations:

e Special transport requirements: Refrigerated or frozen products must be transported
using a cold chain, which limits the number of viable transport routes and increases
individual shipment costs.

e Time-critical deliveries: For fresh products, strict delivery time constraints must be
respected, turning the problem into a time-window-based transportation task.

e Packaging characteristics: The type and extent of packaging required for certain
goods can influence transportation costs, which should also be integrated into the
cost function.

In summary, the design of food supply chain logistics represents a specialized and complex
variant of the classical transportation problem, where, in addition to cost minimization, strict
quality, environmental, and time-related constraints must be satisfied [15].

2.3.4. Transportation of vehicle components. As private individuals, we typically order
parts from distributor companies; however, these components originally travel from
manufacturing sites to the distributors. The logistics systems of the automotive industry often
operate based on lean and just-in-time (JIT) principles, meaning components are shipped
only when they are actually needed. This minimizes warehousing costs and reduces the need
for inventory.
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Proper packaging is also a key focus during the transportation of vehicle components to
protect sensitive parts from damage. Depending on urgency, transportation may occur by
road, rail, or air. The return of defective components and all transport-related activities must
be thoroughly documented to ensure full traceability [16].

From a mathematical perspective, the movement of components can be modeled as a
classic transportation problem. The objective in this case is to deliver vehicle parts from
manufacturing sites (sources) to distributors, repair shops, or end-users (destinations), while:

e respecting the available inventory at the sources (supply),

o satisfying the demand at the destinations (order quantities), and

¢ minimizing the total transportation cost associated with each route (which may vary
depending on the transportation mode: road, rail, or air).

Additional complicating factors include:

¢ Differences in transportation modes: Depending on urgency, different modes must
be chosen, each with distinct costs and delivery times (e.g., air freight is faster but
more expensive).

e Return logistics: The return of defective parts must be incorporated into the logistics
system, generating additional transport tasks and associated costs.

e Packaging requirements: Certain components require special packaging, which can
increase transportation costs and should be reflected in the cost function.

In summary, the supply of vehicle components represents a complex transportation problem,
where cost optimization must be achieved alongside speed, accuracy, and secure delivery
requirements [17].

2.3.5. Waste transportation. Each landfill site typically serves multiple municipalities, and
the transport of residential waste from these areas requires careful logistical planning. As a
first step in the waste management process, the volume of waste generated by each
municipality is assessed. Based on this data, transportation routes and schedules are
optimized. Route planning takes into account the layout of each settlement and local traffic
conditions to develop the most cost-effective solutions. During transportation, strict
adherence to environmental and public health regulations is essential—such as ensuring that
waste is moved in sealed containers.
From a mathematical perspective, the transport of municipal waste to landfill sites can be
modeled using the classical transportation problem framework [18]. The objective is to:
e transport the waste generated in municipalities (sources),
o to the designated landfill sites (destinations),
e in such a way that the total transportation cost is minimized, considering:
— the amount of waste accumulated in each municipality (supply),
— the capacity of each landfill (demand),
— and the transportation costs between each municipality-landfill pair (which
may depend on distance, road type, and the characteristics of the required
transport vehicles).

Additional factors influencing the problem include:
e Capacity constraints: Landfills have limited capacities, which must be strictly
accounted for in the transportation plan.
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e Environmental regulations: For instance, waste must be transported in sealed
containers, necessitating specific vehicle types and resulting in higher transportation
costs.

e Route-specific factors: The geographical layout and traffic conditions of
municipalities—such as mountainous terrain or congested urban zones—can
significantly affect transportation costs.

In summary, waste transportation planning represents a complex version of the classical
transportation problem, where in addition to cost optimization, compliance with legal and
environmental standards is a fundamental requirement [19].

2.4. Solution methods for transportation problems

The transportation problem is a type of linear programming problem that focuses on finding
the most efficient way to distribute goods from multiple sources to multiple destinations
while minimizing total transportation cost. Several methods have been developed to find
initial feasible and optimal solutions to this problem. Below is a summary of the most
commonly used methods, each with a brief description and corresponding process flow [6].

2.4.1. North-West Corner Method. The North-West Corner Method is a basic technique to
find an initial feasible solution. It starts at the top-left (north-west) cell of the transportation
table. Units are allocated to this cell as much as possible without exceeding supply or
demand. Once supply or demand is satisfied, the method moves either right or down
depending on which constraint is exhausted. This continues until all supply and demand
constraints are fulfilled. It does not consider transportation costs, so the result is usually not
optimal (see Fig. 1).

l

Adjust row/column (move right/down)

Initialize at top-left cell Repeat until all supply/demand met

]
Allocate min(supply, demand) »

Figure 1. Flowchart of North-West Corner Method (Source: own edition)

2.4.2. Least Cost Method. The Least Cost Method improves upon the North-West Corner
by considering transportation costs. It selects the cell with the lowest cost for allocation at
each step. Then, it assigns as much as possible to this cell without violating supply or demand.
Once either the row or column is fulfilled, it is crossed out and the process continues. Ties
are broken arbitrarily or by choosing the next least cost. This yields a better initial solution
than the North-West Corner method but still might not be optimal (see Fig. 2).

2.4.3. Vogel’s Approximation Method. Vogel’s Approximation Method is a heuristic that
generally provides a very good initial feasible solution. For each row and column, it
calculates a penalty — the difference between the two lowest costs. The row or column with
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the highest penalty is selected to make an allocation. Within that row/column, allocation is
made to the cell with the lowest cost. Supply and demand are updated, and the penalties are
recalculated. This continues until all allocations are completed (see Fig. 3).

l

Cross out fulfilled row/column

!

Find cell with least cost

Repeat until all allocations done

I

Allocate min(supply, demand)

Figure 2. Flowchart of Least Cost Method (Source: own edition)

l

Allocate in min cost cell

l

Calculate row/column penalties

Update supply/demand

]

]

Choose max penalty row/column

Repeat until done

[

Figure 3. Flowchart of Vogel’s Approximation Method (Source: own edition)

2.4.4. Simplex Method. The Simplex Method is used for optimizing linear programming
problems, including transportation problems. After obtaining an initial basic feasible
solution, Simplex iteratively improves the solution. It identifies entering and leaving
variables based on optimality conditions. Pivoting is performed to move to a better corner
point in the feasible region. The process continues until there is no further improvement in
the objective function. It guarantees an optimal solution if one exists (see Fig. 4).

Perform pivot operation
Generate feasible solutions Update solution

]

]

Check optimality conditions

Repeat until optimal

]

Select entering/leaving variables

]

Figure 4. Flowchart of Simplex Method (Source: own edition)
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3. OPTIMIZATION OF COMPLEX TRANSPORTATION PROBLEMS USING A LINEAR
SOLVER

As demonstrated in the previous chapters discussing operations research methods, traditional
transportation problems can be solved using the techniques introduced. However, when
complex constraints are added — making the optimization problem more intricate and
potentially non-linear — analytical methods may no longer be sufficient, and heuristic
approaches might be necessary.

In this chapter, we examine which constraints increase the complexity of the model while
still keeping the problem linear, allowing it to be solved using Excel’s built-in Solver. For
each example, we will present the mathematical model, followed by its representation in the
Solver, along with the corresponding Excel worksheets.

To ensure the worksheets remain readable, we begin with a medium-sized (8%8) base
problem to demonstrate how transportation problems of varying complexity can be solved
using the evolutionary solver. All examples will involve balanced transportation problems,
since transforming an unbalanced problem into a balanced one can be done as previously
explained and does not increase the complexity of the task.

3.1. Solving the classical transportation problem

3.1.1. Mathematical model of the classical transportation problem. The objective
function for an 8x8 transportation problem can be written in the following form:

8 8
C= ZZyW * Xy — Min. (13)

u=1v=1

Since the transportation problem is balanced, the following condition can be taken into

consideartion:
8 8
dn=)n (14)
v=1

u=1
The first constraint is the supply condition, which states that the amount shipped from
each supply point must equal the amount available:
8
Vo qu,, =7, 15)
v=1
The second constraint is the demand condition, which states that the amount delivered to
each demand point must equal the demand, meaning that all demands must be fully satisfied:
8
Vv wa, = Dy. (16)
u=1

3.1.2. Optimization of a traditional transportation problem using a linear solver. The
traditional transportation problem is a linear programming problem, and therefore it can be
solved using a linear solver. The first step of the solution involves entering the known
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parameters of the problem, the objective function, the constraints, and the decision variables
into an Excel worksheet:
e defining the identifiers of sources and sinks (C2:J2 and B3:B10),
entering the unit transportation costs (C3:J10),
specifying the available quantity of material at each source (K3:K10),
entering the demand at each sink (C11:J11),
selecting the cells for the decision variables (N3:U10),
calculating the objective function, which is the sum of the products of corresponding
elements from the unit transportation cost matrix and the decision variable matrix
(K14),
e to specify the first constraint, calculating the row sums of the decision variable
matrix (V3:V10),
e to specify the second constraint, calculating the column sums of the decision
variable matrix (N11:U11).

The Excel worksheet described above is illustrated in Fig. 5.
A B C|D|E F| G H | J K L' M N O P Q R S T U v

1
2 N1[N2[N3[N4[Ns N6 N7 N8| sum N1[N2 N3 [Na[Ns N6 N7 [N8] sum
3 F1 |58 |19 (44 |54 |20 57|22 |58 332 Fl | 0|0 75| 0 (257 0 |0 | O 332
4 F2 |44 | 15|16 |23 |35 52 48|35 268 F2 | 0|0 268 0| 0| 0| 0| O 268
5 | F3 (281346 /50|17 |40 14 |14 222 F3 | 0|204 O | 0|0 0|18 O 222
6 F4 | 30|24 |46 |57 |57 16|20 |10 260 F4 /10| 0O | O | 0O | O |10| O (240 260
7 F5 |28 |34 |51 |21 |20 40|39 |24 257 F5 (43| 0 0 |214/ 0 O |0 | O 257
8 F6 |23 |17 (59|17 |22 43|24 |38 243 F6 (243 0 0| 0|0 O[O0 | O 243
s F7 14333 [51|29|30|46| 26|50 308 F7 | 0| 0 |22|87| 0| 0|199 O 308
10 F8 |42 |49 |52 |50 |56 |16 24 |11 300 FB /0|0 0| 0|0 30000 |0 300
11 SUM|296|204|365|301|257|310|217|240 SUM|296(204|365|301(257|310(217|240
12
13
14 Objective function:

Figure 5. Excel worksheet for solving a traditional transportation problem using a linear solver
(Source: own edition)

As illustrated in Fig. 5, the optimal solution obtained by the linear solver results in a total
cost 0f 43,398 EUR.

The solution can be visually represented using a bipartite graph. For this purpose, we
created and executed the following Python code on the online platform
https://colab.research.google.com/:

import matplotlib.pyplot as plt

import networkx as nx

import numpy as np

# Optimal solution resulted by the Solver

matrix = np.array([

(o, o, 75, o, 257, o, 0, 01,
(o, o, 268, 0, 0, 0, 0, 01,
(o, 204, o0, o, 0, o, 18, 01,
(o, o, o, o, o0, 10, 0, 2401,
[43, o, o0, 214, 0, 0, 0, 01,
[243, 0, O, O, O, O, O, O],
(o, o, 22, 87, 0, 0, 199, 01,
(o, o, o, o, o, 300, 0, 0]



Modeling and Solving Transportation Problems 63

1)

rows, cols = matrix.shape
# Create graph

G = nx.Graph ()

# Add nodes

for 1 in range (rows):

(
G.add node (f"F{i+1}", bipartite=0) # left-side nodes Fl1, F2, ..., F8
for j in range(cols):
G.add node (f"N{j+1}", bipartite=1) # right-side nodes N1, N2, ..., N8

# Add edges based on matrix values
for 1 in range (rows):
for j in range(cols):
if matrix[i, j] > O:
G.add edge (f"F{i+1}", f"N{j+1}", weight=matrix[i, Jj])
# Define positions

pos = {}
for 1 in range (rows

for j in range(cols

pos [f"N{j+1}"] (2, -j) # right-side nodes
# Labels of edge labels
edge_labels = {(u, v): d["weight"] for u, v, d in G.edges (data=True)}
# Show graph
plt.figure (figsize=(8, 6))
nx.draw (

G, pos,

with_labels=True,

node_size=600,

node_color="lightblue",

font_size=10,

edge color="gray"

)8
pos[f"F{i+1}"] = (0, -i) # left-side nodes
)3

)
nx.draw_networkx edge labels (

G, pos, edge labels=edge labels, font size=8, label pos=0.2,
verticalalignment="'center'

)
plt.tight layout ()
plt.show()

Based on the above code, Fig. 6 presents the optimal solution of the traditional transportation
problem in the form of a bipartite graph.

F1 N1

x\m

22— N2
268

P
F3 N3

"
iz

Fa N4
3
> i
— __—— 1 3

) /1‘5 -

F6 N6
7
ﬁ;;ﬁiijﬁjm
F7 139 N7
/ =
F8 N8

Figure 6. Optimal solution of the traditional transportation problem as a bipartite graph
(Source: own edition)
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3.2. Solving a capacity-constrained transportation problem

3.2.1. Mathematical model of the capacity-constrained transportation problem. The
traditional model is extended with the following constraint, which defines that only a limited
amount can be transported from each source to each sink. This can also be interpreted as a
generalization of the capacity limitations of transport vehicles:

Vux,, <amex 7)

where a* defines the quantity that can be transported from source u to sink v.

3.2.2. Optimization of a capacity-constrained transportation problem using a linear
solver. The capacity-constrained transportation problem is still a linear programming
problem, and therefore it can be solved using a linear solver. The first step of the solution
involves entering the known parameters, the objective function, the constraints, and the
decision variables into an Excel worksheet, as shown in Fig. 7.

Al B (C[D|E|[F|[G H[I J| K [L|M|N[O[P Q[R[S|[T U| V
1

2 N1 N2 N3 [N N5 N6 [ N7 [ N8| sum N1[ N2 [ N3 |4 [ N5 N6 [N7 N8| sum
3 [F1 581944542057 22|58 332 FL | 0 [3630) 0 [100 0 [166] 0 | 332
4 | F2|as]15]16 23|35 52|28|35| 268 F2 | 0 [168[200] 0 [0 |0 [0 [0 | 268
s [ F3[2813[46 5017 40[14] 14| 222 F3 (208 0 [0 [0 |0 [0 [16] 0| 222
6 | F4|3024|46 57|57 16]20] 10| 260 F4 |10 0 |0 |0 |0 [1%0] 0 60| 260
7 | F5 |28 34|51 21]20 40[39] 24| 257 F5 |30 0 |0 |70|157[ 0 [0 0| 257
8 | F6|23|17|59|17|22]43 |24 38| 243 F6 |50| 0 |0 193/ 0 [0 |0 0| 243
9 | F7|43|33|51 29|30 46[ 26|50 308 F7 | 0| o0 |235/38| 0 [0 |35 0| 308
10 | F8 |42]49]52 5056 1624 11| 300 F8 | 0| 0| oo o [120] o 180 300
11 [sUM|296|204]365] 301|257 310|217 | 240 |sum| 296|204 365 301|257|310[ 217 240

12

13 N1 N2 N3 [nNa[N5[N6[N7 N8

14 [F1 [332[332] 30 |332[100[332[332[332 Objective function:|_49486 |
15 [ F2 |268[268[100] 268|268 268 268 268

16 | F3 |222]100(222(222(222 222222 222

17 F4 |260(260|260|260|260|260|260|120

18 [ F5 | 30 [257[257]257(257 257257 257

19 [[F6 | 50 [243[243[243243[243[243 243

20| | F7 |308[308|308|308]308[308] 80 308

21 | F8 [300]300]300|300]300] 120|300 300

Figure 7. Excel worksheet for solving a capacity-constrained transportation problem using a
linear solver (Source: own edition)

The components of Fig. 7 contain the following data:
e definition of source and sink identifiers (C2:J2 and B3:B10),
input of unit transportation costs (C3:J10),
available quantity of material at each source (K3:K10),
demand at each sink (C11:J11),
quantity limits on shipments from sources to sinks (C14:J21),
selection of cells for decision variables (N3:U10),
calculation of the objective function, which is the sum of the products of the unit
transportation cost matrix and the decision variable matrix (V14),
e for defining the first constraint, calculating the row sums of the decision variable
matrix (V3:V10),
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e for defining the second constraint, calculating the column sums of the decision
variable matrix (N11:U11).

As illustrated in Fig. 6, the optimal solution obtained by the linear solver results in a total
cost 0f 49,486 EUR.

The optimal solution of the capacity-constrained transportation problem is visualized as
a bipartite graph in Fig. 8.

[ - 180 ~ ne

Figure 8. Optimal solution of the capacity-constrained transportation problem as a bipartite
graph (Source: own edition)

3.3. Solving a time-constrained transportation problem

3.3.1. Mathematical model of the time-constrained transportation problem. The basic
model is extended with an additional constraint. This defines that each source has a specified
availability time, and each sink has a known time window during which the demand must be
fulfilled. Therefore, a source can only deliver to a sink if the availability and demand time
windows overlap. This corresponds to the time interval intersection problem, as the feasible
transportation time window can be determined as follows:

Y u,v: th, € [max(eBmn, Fmin) min(gBmax, gFmaxy] (18)

where t;;,, defines the time interval within which it is possible to transport goods from
source u to sink v., TZ™™ denotes the start time of availability for source u, TZ™%* denotes
the final time of availability for source u, ;™™ denotes the start time of the receiving
capacity of sink v and T5™%* denotes the final time of the receiving capacity of sink v.
This also means that source u can deliver to sink v only if the following condition is
satisfied:
max(tEmin, fminy < min(¢fmax gfmax), (19)

3.3.2. Optimization of a time-constrained transportation problem using a linear solver.
The time-constrained transportation problem is still a linear programming problem and can
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therefore be solved using a linear solver. The first step of the solution involves entering the
known parameters, the objective function, the constraints, and the decision variables into an
Excel worksheet, as shown in Fig. 9.

The components of Fig. 9 contain the following data:

definition of source and sink identifiers (C2:J2 and B3:B10),

input of unit transportation costs (C3:J10),

available quantity of material at each source (K3:K10),

demand at each sink (C11:J11),

lower bound of the sources' availability time window, expressed in calendar days
(C13:J13),

upper bound of the sources' availability time window, expressed in calendar days
(C14:J14),

lower bound of the sinks' acceptable delivery time window, expressed in calendar
days (K16:K23),

upper bound of the sinks' acceptable delivery time window, expressed in calendar
days (L16:1.23),

selection of cells for decision variables (03:V10),

calculation of the objective function, which is the sum of the products of the unit
transportation cost matrix and the decision variable matrix (W12),

to define the first constraint, calculating the row sums of the decision variable matrix
(W16:W23),

to define the second constraint, calculating the column sums of the decision variable
matrix (024:V24),

for the third constraint, creating a binary matrix that, identifies which source-sink
combinations allow transportation.

A B C|D|E|F|G|H I J K L M N | O|/P|Q|R|S | T|U|V w
1
2 N1| N2 |N3|N4|N5|N6|N7| N8| SUM N1|N2|N3|[N4 | N5| N6|N7|N8
3 F1 |58 |19 |44 | 54| 20|57 |22 |58 332 F1 | 0 |69| 6 |0|257/ 0|0 | O
4 F2 |44 15|16 |23 |35|52 |48 |35 268 F2 | 00268/ 0| 0| 0| 0|0
5 | F3 12813 |46 |50|17 |40 |14 |14 222 F3 |[53/135| 0 (0| O | O | O |34
6 F4 | 30|24 |46 |57 |57 |16 |20 10| 260 F4 | 0 | 0|0 |0| 0 54| 0 |206
7 F5 |28 |34 |51 |21 |20|40 |39 |24 | 257 F5 0|0 257/ 0| 0|0 |0
8 F6 | 23|17 (59|17 |22 |43 |24 |38 243 F6 |243) 0| 0|0 |0|O0O|0O| O
9 F7 143|133 [51]29|30|46|26|50| 308 F7 /0|0(f91/0|0|0 (217 O
10 F8 | 42|49 |52 |50 |56 |16 |24 |11| 300 F8 | 0| 0|0 (44| 0256/ 0 | O
1 SUM| 296|204 |365|301|257|310|217| 240
12 Objective function:| 45207

13 ‘min 7 |15|10|20| 7 (8 |5 |10

14 ‘max 15|17 (14 |26 | 25|27 |19 |20

15 N1|N2|N3|N4 | N5|N6|N7| N8 min | max N1 | N2|N3|N4 N5 N6|N7 | N8| SuMm
16| FlL1f(1]1]0)1]1]1]1] 5 18 Fl1 | 0 69| 6|0 257/ 0|0 |0 332
17 F2 1 /0|1 /01|11 1 4 12 F2 | 0 |/0j268)0 | 0| 0|0 |0 268
18 FBl1|1|1|0]1|1|1]1 12 16 F3 |53|135{ 0 |0 | 0| O |0 |34 222
19 FAlo0|1]0/1 1111 15 28 F4 | 0 | 0)0|0]| 0 54| 0 |206] 260
20 FS|/o0oj0j0o|1]|1|1|0|0]| 22 29 FS|0|0|)0f257[0|0|0]0O 257
21 (F6 |1 ]1]1/0 /11 |1]|1] 6 20 F6 (243 0 | O ojo0jo0 |0 243
22 F7 /10|10 |1]|]1]|1 |1 2 12 F7 | 0|0)91|0 |00 |217| 0 308
23 FB|l1|1|1|1]1|1|1]1 6 22 F8 | 0| 0|0 |44| 0256/ 0 | O 300
24 SUM|296|204(365|301|257|310 217|240

Figure 9. Excel worksheet for solving a time-constrained transportation problem using a linear

solver (Source: own edition)
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The optimal solution of the time-window-constrained transportation problem is visualized as
a bipartite graph in Fig. 10.

Figure 10. Optimal solution of the time-constrained transportation problem as a bipartite graph
(Source: own edition)

3.4. Solving a time- and capacity-constrained transportation problem
3.4.1. Mathematical model of the time- and capacity-constrained transportation

problem. Based on the previously outlined models, the general model of the time- and
capacity-constrained transportation problem can be formulated as follows:

8 8
C= z Z Vv * Xyp = MiN. (20)

u=1v=1
8 8
Z r, = Z - @1)
u=1 v=1
8
Vo Z Xyy = Ty (22)
v=1
8
Vv 2 P— (23)
u=1
Vou:x,, <ays, (24)

Y u,v: t), € [max(cEmin, ¢Fminy min(¢Emaex, gfmaxy], 25
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3.4.2. Optimization of a time- and capacity-constrained transportation problem using a

linear solver. The time- and capacity-constrained transportation problem is still a linear

programming problem, and therefore it can be solved using a linear solver. The first step of

the solution involves entering the known parameters, the objective function, the constraints,

and the decision variables into an Excel worksheet, as shown in Fig. 11.
The components of Fig. 11 contain the following data:

e definition of source and sink identifiers (C2:J2 and B3:B10),

input of unit transportation costs (C3:J10),

available quantity of material at each source (K3:K10),

demand at each sink (C11:J11),

capacity limits for quantities transported from sources to sinks (Y3:AF10),

lower bound of the sources’ availability time window, expressed in calendar days

(C13:J13),

e upper bound of the sources’ availability time window, expressed in calendar days
(C14:J14),

e lower bound of the sinks’ acceptable delivery time window, expressed in calendar
days (K16:K23),

e upper bound of the sinks’ acceptable delivery time window, expressed in calendar
days (L16:1.23),

e selection of cells for decision variables (03:V10),

e calculation of the objective function, which is the sum of the products of the unit
transportation cost matrix and the decision variable matrix (W12),

e to define the first constraint, calculating the row sums of the decision variable matrix
(W16:W23),

e to define the second constraint, calculating the column sums of the decision variable
matrix (024:V24),

o for the third constraint, a binary matrix must be created, which determines in which
source-sink pairs transportation is allowed.

AlB|C|D|IEJF|G|H I ] K L M N|O|IP|IQ|R|[S|T|uU |V w X Y | Z AA AB AC AD AE AF
1
2 N1[N2[N3[Na[Ns|N6[N7[Na]sum N1[N2|N3[N4| N5 NG| N7 | N8 N1 N2 [N3|N4|NS|N6|N7[ N8
3| [[FL |58 19|44 54]20[57 2258 332 F1| 0 [168[30| 0 [100[ 0 [34] O F1332|332| 30 [332| 100|332 332332
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6 F4 | 30|24 |46 | 57|57 |16 20|10 | 260 F4A | 0| 0| 0| 00|19 0|70 F4|260|260|260 ZBDAZGD_ZED 260|120
7 E 28|34 |51 | 21|20 (40 39 24| 257 i 0|0 |0 _257 o|0|0|O E 30 |257|257 257_25?_257 257|257
8| | F6 |23 17|59 17|22 (43 24 38| 243 F6 |50 36| 0 | 0 (157 0 | 0| 0 |F6| 50 |243|243| 243|243 243]243] 243
9 | [ F7 |43 33|51 29(30[46 26 50| 308 F7 023500 073]0 77| 308|308[ 308|308 308  308| 80 |308
10| |8 [42 495250 56162411 300 F8 | 0|00 44| 0 120 0 [136 78| 300|300[300[300]300] 120|300| 300
11| [sUM[296]204(365[301257[310[217]240
12 Objective fun:t\on;
13| [min] 7 [15[1020[ 7 [8[5 [10 ]
14 [max| 15 [17 (1226 25|27 1920
15 N1[N2|N3[Na|NS|N6[N7| N8| min | max N1[N2[N3[N4|N5[NG[N7[N8[ SuM
6 [F|1[1[1/ 0 1|1 11| 5 | 18 FL | 0 [168/30] 0 [100( 0 [34] 0| 332
7 [R[1]o[1]o 1|1 1][t] & |1 F2 |168] 0 [100/ 0 [0 [0 |0 [0 | 268
8 [B[1]11]0 1|1 [1]1]12 |16 P2 |78 0] 00|00 110[3a] 222
19 [F o 101 1[1[1]1]15 328 F4|o0|0[o0 0019 o0[70] 260
20 [FB|o|o|o|1 1|1 0 0] 22 | 29 F5| 00| 02570 0 00| 257
21| [P |1|1[1]0]1|1 11| 6 | 20| | F6|50(36] 001570 0|0 243
2| [m[1]o|1]o 1|1[1]1] 2 |1 F7 | 00235 0|00 73[0] 308
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Figure 11. Excel worksheet for solving a time- and capacity-constrained transportation problem
using a linear solver (Source: own edition)
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As illustrated in Fig. 11, the optimal solution obtained by the linear solver results in a total
cost of 54,304 EUR.

The optimal solution of the time- and capacity-constrained transportation problem is
represented as a bipartite graph in Fig. 12.
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Figure 12. Optimal solution of the time- and capacity-constrained transportation problem as a
bipartite graph (Source: own edition)

4. RESULTS

The results presented in Table 1 show how different constraints affect the performance and
cost-efficiency of transportation models. The basic model, which includes no capacity or time
restrictions, achieves the lowest total cost of 43,398 EUR with 15 deliveries. This outcome
is expected, as the lack of constraints allows for maximum flexibility in assigning shipments
from sources to sinks.

Table 1.
Comparison of numerical results (own edition)
Objective function Number of routes
Modell [EUR| ]
Basic model 43,398 15
Capacity-constrained model 49,486 20
Time-constrained model 45,207 15
Capacity- and time- constrained model 54,304 19

Introducing capacity constraints leads to a noticeable increase in both the objective function
value and the number of deliveries. Specifically, the cost rises to 49,486 EUR, and the
number of deliveries increases to 20. This suggests that limiting how much can be transported
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between each source and sink pair forces the system to use more delivery routes, some of
which are likely more expensive, thereby increasing the overall cost.

In contrast, the time-constrained model results in a moderate increase in cost, reaching
45,207 EUR, but the number of deliveries remains unchanged at 15. This implies that
although time windows reduce flexibility, the system can still meet all demands using the
same number of deliveries, possibly by shifting delivery timing without altering the routes
significantly.

The most complex case, which includes both time and capacity constraints, yields the
highest cost at 54,304 EUR and results in 19 deliveries. This highlights the cumulative effect
of combining multiple restrictions, where both temporal and quantitative limits reduce the
solution space considerably, requiring costlier and more diverse logistics solutions.

Overall, the comparison clearly demonstrates that additional constraints lead to higher
total costs and more complex delivery structures. From a practical standpoint, decision-
makers must carefully balance logistical requirements and operational constraints to optimize
costs while ensuring feasibility. The trade-offs highlighted by these models underline the
importance of precise planning and constraint analysis in transportation optimization
problems.
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