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Abstract: This paper provides a comprehensive overview of classical and extended transportation 
problem-solving methods. It introduces well-known algorithms such as the North-West Corner Method, 
Least Cost Method, Vogel’s Approximation Method, and the Simplex Method. The paper also presents 
real-world application areas, including home delivery of e-commerce packages, transportation of 
medical equipment and pharmaceuticals, transportation of fresh food products. Practical examples 
illustrate how these models function in real industrial contexts. Beyond the classical transportation 
model, the study explores its extensions by incorporating capacity and time constraints. These extended 
models are analyzed to understand their impact on cost and solution structure. The findings highlight 
the trade-offs between model complexity and operational feasibility in real-world transportation 
planning. 
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1. INTRODUCTION 
 

Transportation problems constitute an essential part of the design tasks within material flow 

systems. Therefore, this chapter briefly reviews the main design tasks, following the 

framework outlined by Cselényi & Illés [1]. The design of material flow systems inherently 

involves the placement of factories, warehouses, and machines or storage units within a 

facility. When determining the location of such units, multiple criteria must be considered, 

and often more than one feasible solution may exist. Additionally, from an operational cost 

perspective, material handling cost and workload are critical factors. Therefore, among the 

possible facility layout and placement plans, those should be selected that meet the specified 

requirements and are optimal from the perspective of the material flow system. 

The design models for the installation of machines and equipment can be categorized into 

two main groups: based on the shape of the objects to be placed, and whether the planning 

process is simple or integrated. The key difference between simple and integrated layout 

planning lies in their scope: in simple layout planning, only the assignment of objects to 

facility locations is carried out based on a given distance matrix; whereas in integrated 

planning, the material handling equipment is also selected, the transport paths are defined, 

and only then are the objects assigned to the appropriate facility locations. 

Route planning involves determining optimal paths to ensure efficient material handling. 

Nowadays, the importance of forklift route planning is increasing, as significant cost savings 

can be achieved by designing optimal transport routes. A current trend is the retrofitting of 

traditional forklifts with automation capabilities, enabling either offline or online operation 
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modes. This allows them to communicate with the computer systems controlling the logistics 

processes and the company’s enterprise information system. 

Driverless forklift systems (Automated Guided Vehicles, AGVs) can also be 

implemented, in which case route planning becomes particularly critical ‒ especially when 

coordinating the operations of many AGVs. 

The design of forklift-based material flow systems includes several elements: defining 

the boundaries of the material flow system, constructing the distance matrix, analyzing unit 

load formation, selecting the appropriate forklift type, designing loading/unloading stations, 

planning the forklift routes, determining the number of forklifts and unit loads required, and 

developing the forklift control system. 

Route planning must take into account the intensity of material flow, the available fleet 

of forklifts, different types of transport routes, the forklifts’ loading capacities, waiting times, 

and time constraints tied to specific operations. 

Unit loads formed from individual items play a crucial role in facilitating the flow of 

materials and goods within logistics systems. Typically, a unit load (UL) refers to a grouping 

of materials or products placed on a unit load forming device (ULFD), which is then handled 

as a single entity throughout the logistics processes. Thus, the concept of a unit load 

inherently includes the product or material itself as well as the device that forms and supports 

the unit. 

The functions and design of unit loads are always aligned with the logistical requirements 

of production and service processes. Unit loads can be classified according to various criteria, 

such as their content, function, or place of use. Based on their content, unit loads can be 

homogeneous, heterogeneous, or multi-level. According to their function, they may serve as 

RST (storage and transport) or technological unit loads. From the perspective of their 

application, they can be associated with procurement, distribution, production, or recycling 

processes. 

The objective is to determine the number of devices required within a logistics system. 

To do this, it is important to consider that some material flow systems consist of machines 

operating in an intermittent or cyclical manner. Such machines result in discontinuous 

material flow. They operate in work cycles, meaning they can transport a specified quantity 

of material from the loading point to the unloading point during each cycle. 

Before selecting an intermittently operating device, one must consider its mobility, as the 

equipment can either be mobile or stationary (fixed installation). The performance of 

intermittent transport systems depends on several factors: the weight of the load, the transport 

distance, and the intensity of material movement. 

The reliability with which a material flow task can be carried out is one of the most critical 

evaluation criteria. Enhancing this reliability requires consideration of several factors, such 

as whether the material handling equipment operates in a continuous or intermittent mode. 

The degree and sophistication of mechanization also play a significant role, as human-related 

uncertainty cannot be disregarded. 

To determine the reliability characteristics of system components, the calendar operating 

time must be used as the basis of analysis. In material handling systems, direct or indirect 

connections often exist between storage units and equipment, which can result in system-

wide shutdowns if a single component fails. 

There are various types of reliability models used to analyze such systems, including 

series models, parallel models, hybrid connection models, bridge connection models, and k-

out-of-n (KooN) models [2]. 
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The essence of the assignment problem lies in assigning m resources to n tasks in such a way 

that the defined objective function reaches its optimal value. In assignment problems, typical 

objective functions include cost minimization, efficiency maximization, or defect rate 

minimization [3]. It is essential that each resource is assigned to exactly one task, and each 

task is performed by exactly one resource. Furthermore, the assignment costs must be known 

in advance. Naturally, instead of cost, the objective function can be based on productivity 

indicators, defect ratios, or other quality metrics [4]. 

In practice, assignment problems are frequently used to allocate machines or operators to 

workpieces or tasks. 

In contrast, the transportation problem aims to determine the optimal distribution of 

goods, where multiple production or supply sites must deliver to several demand points, such 

that the total transportation cost is minimized while satisfying supply and demand constraints. 

The problem assumes that each source has a defined supply, each destination has a specific 

demand, and the transportation costs between each source and destination are known. 

Practical applications include material movement between production, warehouses, and 

customers, or the optimization of raw material supply chains [5]. 

 

2. TRANSPORTATION AND ASSIGNMENT PROBLEMS 
 

The core concept of the assignment problem is to allocate m resources to n tasks in such a 

way that a defined objective function reaches its optimum. In this context, the objective may 

be the minimization of cost, the maximization of efficiency, or the minimization of defect 

rates [3]. It is crucial that each resource is assigned to only one task, and each task is handled 

by only one resource. Additionally, the assignment costs must be known in advance. 

Naturally, instead of cost, the objective function can also be based on other metrics such as 

productivity indicators, defect rates, or other quality-related measures [4]. 

In practical applications, assignment problems are commonly used for matching 

machines or operators to workpieces or tasks. The goal of the transportation problem is to 

determine the optimal distribution of goods such that products are shipped from multiple 

production sites to multiple demand points while minimizing total transportation costs, and 

at the same time satisfying all supply and demand requirements. The problem assumes that 

each source has a specific supply, each destination has a defined demand, and the 

transportation costs between sources and destinations are known. This model can be applied, 

for example, in the movement of goods between production facilities, warehouses, and 

customers, or in the optimization of raw material supply chains [5]. 

 

2.1. Mathematical description of transportation problems 

 

When formulating the optimization model of transportation problems, it is necessary to 

define the following key model elements [6]: 

• input parameters, 

• objective function(s), 

• constraints, including any potential sign restrictions, 

• decision variables. 

 

In general, the input parameters of transportation problems include the distances or 

transportation costs between each pair of nodes (relations), the available supply at each 
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source, and the demand at each sink (destination). Let 𝑦𝑢𝑣  denote the transportation distance 

or cost between supply point u and demand point j. Let u=1…m represent the supply nodes 

(sources) and v=1…n represent the demand nodes (sinks). Then, the objective function of the 

transportation problem – which aims to minimize the total transportation cost or total 

transportation distance – can be expressed as follows: 

𝐶 = ∑ ∑ 𝑦𝑢𝑣 

𝑛

𝑣=1

∙ 𝑥𝑢𝑣 → 𝑚𝑖𝑛. ,

𝑚

𝑢=1

 (1) 

where 𝐶 denotes the objective function to be optimized, and 𝑥𝑢𝑣 represents the decision 

variable of the optimization problem, which satisfies the following conditions: 

∀ 𝑢, 𝑣: 𝑥𝑢𝑣 ∈ ℝ. (2) 

In transportation problems, two key constraints must be defined. The first constraint relates 

to supply and ensures that no supply point can ship more than its available capacity. This 

condition can be formulated as follows: 

∀ 𝑢: ∑ 𝑥𝑢𝑣 

𝑛

𝑣=1

≤ 𝑟𝑢 , (3) 

where 𝑟𝑢 is the amount of product available at supply point 𝑢 (supply constraint). 

The second constraint refers to demand and ensures that no demand point receives less 

than its required quantity; in other words, all demand must be fully satisfied: 

∀ 𝑣: ∑ 𝑥𝑢𝑣

𝑚

𝑢=1

≥ 𝑝𝑣 , (4) 

where 𝑝𝑣 is the demand at demand point 𝑣 (demand constraint). 

If the total supply equals the total demand, the problem is referred to as a balanced 

transportation problem. In this case, the general model defined by equations (1–4) can be 

expressed in the following form: 

𝐶 = ∑ ∑ 𝑦𝑢𝑣 

𝑛

𝑣=1

∙ 𝑥𝑢𝑣 → 𝑚𝑖𝑛. ,

𝑚

𝑢=1

 (5) 

∑ 𝑟𝑢

𝑚

𝑢=1

= ∑ 𝑝𝑣

𝑛

𝑣=1

, (6) 

∀ 𝑢: ∑ 𝑥𝑢𝑣 

𝑛

𝑣=1

= 𝑟𝑢 , (7) 

∀ 𝑣: ∑ 𝑥𝑢𝑣

𝑚

𝑢=1

= 𝑝𝑣 . (8) 
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2.2. Balancing of transportation problems 

 

If the transportation problem is unbalanced, two cases can be distinguished: 

• in the first case, the total supply exceeds the total demand, while 

• in the second case, the total demand exceeds the total supply. 

 

2.2.1. Balancing a transportation problem when total supply exceeds total demand. In 

this case, the transportation problem can be balanced by introducing a virtual demand point 

whose demand is exactly equal to the surplus supply. If the transportation cost to this dummy 

demand point is set to zero from all supply points, the unbalanced transportation problem is 

transformed into a balanced one. 

If the transportation problem is unbalanced and total supply exceeds total demand, it can 

be formulated with the following condition: 

∑ 𝑟𝑢

𝑚

𝑢=1

> ∑ 𝑝𝑣

𝑛

𝑣=1

. (9) 

In this case, the introduction of the virtual demand point can be defined in the following form: 

𝑝𝑛+1 = ∑ 𝑟𝑢

𝑚

𝑢=1

− ∑ 𝑝𝑣

𝑛

𝑣=1

. (10) 

 

2.2.2. Balancing a transportation problem when total demand exceeds total supply. 

There is no feasible solution to this problem, as it is not possible to satisfy all demand due to 

limited supply. However, in order to make the transportation problem solvable (even if not 

all demand is fulfilled), a virtual supply point can be introduced. This point does not exist in 

reality and does not provide actual goods, but it allows the transportation problem to be 

balanced. In such cases, unmet demand may incur a penalty cost. 

If the transportation problem is unbalanced and total demand exceeds total supply, this 

condition can be formulated as follows: 

∑ 𝑟𝑢

𝑚

𝑢=1

< ∑ 𝑝𝑣

𝑛

𝑣=1

. (11) 

The introduction of the virtual supply point can then be defined in the following form: 

𝑟𝑚+1 = ∑ 𝑝𝑣

𝑛

𝑣=1

− ∑ 𝑟𝑢

𝑚

𝑢=1

. (12) 

 

2.3. Application areas of transportation problems 

 

Transportation problems have numerous application areas, some of which are discussed in 

this chapter. 

 

2.3.1. Home delivery of e-commerce packages. Courier and postal services have long-

established delivery systems that have evolved into a standalone industry. Initially, online 
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shops delivered ordered packages to customers through the national postal service, typically 

with a turnaround of several days. Today, specialized logistics companies like GLS, DPD, or 

ExpressOne enable much faster delivery – often within 1-2 days – complemented by parcel 

locker or pickup point options. 

From a mathematical standpoint, the operation of courier services can be interpreted as 

solving classic transportation problems. In such scenarios, packages must be transported from 

various warehouses or distribution centers to customers or pickup points in a way that: 

• accounts for the available supply (capacity) at the source points (warehouses), 

• satisfies the demand at the destinations (customers or pickup points), 

• considers transportation costs associated with each delivery route (e.g., distance, 

time, fees), 

• minimizes the total transportation cost [7]. 

 

For international deliveries, the transportation task becomes multi-stage: packages pass 

through distribution hubs in several countries, which can be modeled as a sequence of 

interdependent transportation problems. 

Additional complexities for logistics providers include: 

• Time windows: Deliveries must occur within specific time intervals, turning the 

problem into a time-constrained transportation task. 

• Returns management: Undelivered packages need to be sent back, generating a 

reverse transportation problem, where destinations and sources switch roles. 

• Multiple delivery attempts: Failed deliveries trigger repeated attempts, adding extra 

transportation costs that must be optimized at the system level. 

 

In summary, modern courier and parcel delivery systems are built on dynamic and complex 

variations of classical transportation optimization problems. These systems must consider 

not only cost minimization but also temporal and capacity constraints [8, 9]. 

 

2.3.2. Transportation of Medical Equipment and Pharmaceuticals. The transportation of 

medical devices and pharmaceuticals is governed by strict regulations to ensure the safety, 

quality, and efficacy of the products. Throughout the logistics process, it is essential to 

maintain continuous tracking, perform regular checks, and keep accurate documentation. 

This is particularly critical for temperature-sensitive or specially-handled medications, where 

maintaining appropriate environmental conditions - such as a consistent cold chain - is vital. 

From a mathematical perspective, these transportation processes can be modeled using 

the framework of classical transportation problems [10]. In such cases, the objective is to 

transport medical equipment or pharmaceuticals: 

• from various production sites or warehouses (sources), 

• to hospitals, pharmacies, or healthcare centers (destinations), 

in a way that: 

• respects the available stock at each source (supply), 

• fulfills the demand at each destination, and 

• considers the transportation costs on each route (which may include additional fees 

for refrigerated or special handling), 

while minimizing total transportation cost and fully satisfying all demands [11]. 
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Special attention must be given to the following factors: 

• Cold chain logistics requirements: Some destinations only accept deliveries via 

refrigerated transport. These routes can only be served using specialized vehicles, 

adding constraints and potential cost increases to the transportation model. 

• Special handling requirements: Certain medicines require expedited delivery or 

specific handling conditions, which must be factored into the cost function as 

penalties or additional costs. 

• Dual cost structures: Standard and special shipments often have different pricing 

schemes. This must be accounted for when developing an optimal transportation 

plan. 

 

In summary, the distribution of medical products constitutes a complex transportation 

problem where strict adherence to handling conditions is just as critical as cost minimization 

during the optimization process [12]. 

 

2.3.3. Transportation of Fresh Food Products. The planning of fresh food transportation 

depends on several factors, such as which products are in short supply at specific retail 

locations, and from which sources these products can be procured and at what distance. In 

mathematical terms, the distribution of food products can be modeled as a classic 

transportation problem [13]. The objective is to: 

• transport food products from various production sites, warehouses, or wholesale 

distribution centers (sources), 

• to retail stores or final points of sale (destinations), 

in a way that takes into account the available quantities at the sources (supply), satisfies 

the demand at the stores, and minimizes the total transportation cost associated with each 

route (including distance, transit time, and any special transport requirements) [14]. 

This problem becomes more complex due to the following considerations: 

• Special transport requirements: Refrigerated or frozen products must be transported 

using a cold chain, which limits the number of viable transport routes and increases 

individual shipment costs. 

• Time-critical deliveries: For fresh products, strict delivery time constraints must be 

respected, turning the problem into a time-window-based transportation task. 

• Packaging characteristics: The type and extent of packaging required for certain 

goods can influence transportation costs, which should also be integrated into the 

cost function. 

 

In summary, the design of food supply chain logistics represents a specialized and complex 

variant of the classical transportation problem, where, in addition to cost minimization, strict 

quality, environmental, and time-related constraints must be satisfied [15]. 

 

2.3.4. Transportation of vehicle components. As private individuals, we typically order 

parts from distributor companies; however, these components originally travel from 

manufacturing sites to the distributors. The logistics systems of the automotive industry often 

operate based on lean and just-in-time (JIT) principles, meaning components are shipped 

only when they are actually needed. This minimizes warehousing costs and reduces the need 

for inventory. 
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Proper packaging is also a key focus during the transportation of vehicle components to 

protect sensitive parts from damage. Depending on urgency, transportation may occur by 

road, rail, or air. The return of defective components and all transport-related activities must 

be thoroughly documented to ensure full traceability [16]. 

From a mathematical perspective, the movement of components can be modeled as a 

classic transportation problem. The objective in this case is to deliver vehicle parts from 

manufacturing sites (sources) to distributors, repair shops, or end-users (destinations), while: 

• respecting the available inventory at the sources (supply), 

• satisfying the demand at the destinations (order quantities), and 

• minimizing the total transportation cost associated with each route (which may vary 

depending on the transportation mode: road, rail, or air). 

 

Additional complicating factors include: 

• Differences in transportation modes: Depending on urgency, different modes must 

be chosen, each with distinct costs and delivery times (e.g., air freight is faster but 

more expensive). 

• Return logistics: The return of defective parts must be incorporated into the logistics 

system, generating additional transport tasks and associated costs. 

• Packaging requirements: Certain components require special packaging, which can 

increase transportation costs and should be reflected in the cost function. 

 

In summary, the supply of vehicle components represents a complex transportation problem, 

where cost optimization must be achieved alongside speed, accuracy, and secure delivery 

requirements [17]. 

 

2.3.5. Waste transportation. Each landfill site typically serves multiple municipalities, and 

the transport of residential waste from these areas requires careful logistical planning. As a 

first step in the waste management process, the volume of waste generated by each 

municipality is assessed. Based on this data, transportation routes and schedules are 

optimized. Route planning takes into account the layout of each settlement and local traffic 

conditions to develop the most cost-effective solutions. During transportation, strict 

adherence to environmental and public health regulations is essential—such as ensuring that 

waste is moved in sealed containers. 

From a mathematical perspective, the transport of municipal waste to landfill sites can be 

modeled using the classical transportation problem framework [18]. The objective is to: 

• transport the waste generated in municipalities (sources), 

• to the designated landfill sites (destinations), 

• in such a way that the total transportation cost is minimized, considering: 

‒ the amount of waste accumulated in each municipality (supply), 

‒ the capacity of each landfill (demand), 

‒ and the transportation costs between each municipality-landfill pair (which 

may depend on distance, road type, and the characteristics of the required 

transport vehicles). 

 

Additional factors influencing the problem include: 

• Capacity constraints: Landfills have limited capacities, which must be strictly 

accounted for in the transportation plan. 
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• Environmental regulations: For instance, waste must be transported in sealed 

containers, necessitating specific vehicle types and resulting in higher transportation 

costs. 

• Route-specific factors: The geographical layout and traffic conditions of 

municipalities—such as mountainous terrain or congested urban zones—can 

significantly affect transportation costs. 

 

In summary, waste transportation planning represents a complex version of the classical 

transportation problem, where in addition to cost optimization, compliance with legal and 

environmental standards is a fundamental requirement [19]. 

 

2.4. Solution methods for transportation problems 

 

The transportation problem is a type of linear programming problem that focuses on finding 

the most efficient way to distribute goods from multiple sources to multiple destinations 

while minimizing total transportation cost. Several methods have been developed to find 

initial feasible and optimal solutions to this problem. Below is a summary of the most 

commonly used methods, each with a brief description and corresponding process flow [6]. 

 

2.4.1. North-West Corner Method. The North-West Corner Method is a basic technique to 

find an initial feasible solution. It starts at the top-left (north-west) cell of the transportation 

table. Units are allocated to this cell as much as possible without exceeding supply or 

demand. Once supply or demand is satisfied, the method moves either right or down 

depending on which constraint is exhausted. This continues until all supply and demand 

constraints are fulfilled. It does not consider transportation costs, so the result is usually not 

optimal (see Fig. 1). 

 

Figure 1. Flowchart of North-West Corner Method (Source: own edition) 

2.4.2. Least Cost Method. The Least Cost Method improves upon the North-West Corner 

by considering transportation costs. It selects the cell with the lowest cost for allocation at 

each step. Then, it assigns as much as possible to this cell without violating supply or demand. 

Once either the row or column is fulfilled, it is crossed out and the process continues. Ties 

are broken arbitrarily or by choosing the next least cost. This yields a better initial solution 

than the North-West Corner method but still might not be optimal (see Fig. 2). 

 

2.4.3. Vogel’s Approximation Method. Vogel’s Approximation Method is a heuristic that 

generally provides a very good initial feasible solution. For each row and column, it 

calculates a penalty — the difference between the two lowest costs. The row or column with 
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the highest penalty is selected to make an allocation. Within that row/column, allocation is 

made to the cell with the lowest cost. Supply and demand are updated, and the penalties are 

recalculated. This continues until all allocations are completed (see Fig. 3). 

 

 

Figure 2. Flowchart of Least Cost Method (Source: own edition) 

 

Figure 3. Flowchart of Vogel’s Approximation Method (Source: own edition) 

2.4.4. Simplex Method. The Simplex Method is used for optimizing linear programming 

problems, including transportation problems. After obtaining an initial basic feasible 

solution, Simplex iteratively improves the solution. It identifies entering and leaving 

variables based on optimality conditions. Pivoting is performed to move to a better corner 

point in the feasible region. The process continues until there is no further improvement in 

the objective function. It guarantees an optimal solution if one exists (see Fig. 4). 

 

 

Figure 4. Flowchart of Simplex Method (Source: own edition) 
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3. OPTIMIZATION OF COMPLEX TRANSPORTATION PROBLEMS USING A LINEAR 

SOLVER 
 

As demonstrated in the previous chapters discussing operations research methods, traditional 

transportation problems can be solved using the techniques introduced. However, when 

complex constraints are added – making the optimization problem more intricate and 

potentially non-linear – analytical methods may no longer be sufficient, and heuristic 

approaches might be necessary. 

In this chapter, we examine which constraints increase the complexity of the model while 

still keeping the problem linear, allowing it to be solved using Excel’s built-in Solver. For 

each example, we will present the mathematical model, followed by its representation in the 

Solver, along with the corresponding Excel worksheets. 

To ensure the worksheets remain readable, we begin with a medium-sized (8×8) base 

problem to demonstrate how transportation problems of varying complexity can be solved 

using the evolutionary solver. All examples will involve balanced transportation problems, 

since transforming an unbalanced problem into a balanced one can be done as previously 

explained and does not increase the complexity of the task. 

 

3.1. Solving the classical transportation problem 

 

3.1.1. Mathematical model of the classical transportation problem. The objective 

function for an 8×8 transportation problem can be written in the following form: 

𝐶 = ∑ ∑ 𝑦𝑢𝑣 

8

𝑣=1

∙ 𝑥𝑢𝑣 → 𝑚𝑖𝑛.

8

𝑢=1

 (13) 

Since the transportation problem is balanced, the following condition can be taken into 

consideartion: 

∑ 𝑟𝑢

8

𝑢=1

= ∑ 𝑝𝑣

8

𝑣=1

. (14) 

The first constraint is the supply condition, which states that the amount shipped from 

each supply point must equal the amount available: 

∀ 𝑢: ∑ 𝑥𝑢𝑣 

8

𝑣=1

= 𝑟𝑢 . (15) 

The second constraint is the demand condition, which states that the amount delivered to 

each demand point must equal the demand, meaning that all demands must be fully satisfied: 

∀ 𝑣: ∑ 𝑥𝑢𝑣

8

𝑢=1

= 𝑝𝑣 . (16) 

3.1.2. Optimization of a traditional transportation problem using a linear solver. The 

traditional transportation problem is a linear programming problem, and therefore it can be 

solved using a linear solver. The first step of the solution involves entering the known 
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parameters of the problem, the objective function, the constraints, and the decision variables 

into an Excel worksheet: 

• defining the identifiers of sources and sinks (C2:J2 and B3:B10), 

• entering the unit transportation costs (C3:J10), 

• specifying the available quantity of material at each source (K3:K10), 

• entering the demand at each sink (C11:J11), 

• selecting the cells for the decision variables (N3:U10), 

• calculating the objective function, which is the sum of the products of corresponding 

elements from the unit transportation cost matrix and the decision variable matrix 

(K14), 

• to specify the first constraint, calculating the row sums of the decision variable 

matrix (V3:V10), 

• to specify the second constraint, calculating the column sums of the decision 

variable matrix (N11:U11). 

 

The Excel worksheet described above is illustrated in Fig. 5. 

 

 

Figure 5. Excel worksheet for solving a traditional transportation problem using a linear solver 

(Source: own edition) 

As illustrated in Fig. 5, the optimal solution obtained by the linear solver results in a total 

cost of 43,398 EUR. 

The solution can be visually represented using a bipartite graph. For this purpose, we 

created and executed the following Python code on the online platform 

https://colab.research.google.com/: 

 
import matplotlib.pyplot as plt 

import networkx as nx 

import numpy as np 

# Optimal solution resulted by the Solver 

matrix = np.array([ 

    [0, 0, 75, 0, 257, 0, 0, 0], 

    [0, 0, 268, 0, 0, 0, 0, 0], 

    [0, 204, 0, 0, 0, 0, 18, 0], 

    [10, 0, 0, 0, 0, 10, 0, 240], 

    [43, 0, 0, 214, 0, 0, 0, 0], 

    [243, 0, 0, 0, 0, 0, 0, 0], 

    [0, 0, 22, 87, 0, 0, 199, 0], 

    [0, 0, 0, 0, 0, 300, 0, 0] 
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]) 

rows, cols = matrix.shape 

# Create graph 

G = nx.Graph() 

# Add nodes 

for i in range(rows): 

    G.add_node(f"F{i+1}", bipartite=0)  # left-side nodes F1, F2, ..., F8 

for j in range(cols): 

    G.add_node(f"N{j+1}", bipartite=1)  # right-side nodes N1, N2, ..., N8 

# Add edges based on matrix values 

for i in range(rows): 

    for j in range(cols): 

        if matrix[i, j] > 0: 

            G.add_edge(f"F{i+1}", f"N{j+1}", weight=matrix[i, j]) 

# Define positions 

pos = {} 

for i in range(rows): 

    pos[f"F{i+1}"] = (0, -i)  # left-side nodes 

for j in range(cols): 

    pos[f"N{j+1}"] = (2, -j)  # right-side nodes 

# Labels of edge labels 

edge_labels = {(u, v): d["weight"] for u, v, d in G.edges(data=True)} 

# Show graph 

plt.figure(figsize=(8, 6)) 

nx.draw( 

    G, pos, 

    with_labels=True, 

    node_size=600, 

    node_color="lightblue", 

    font_size=10, 

    edge_color="gray" 

) 

nx.draw_networkx_edge_labels( 

    G, pos, edge_labels=edge_labels, font_size=8, label_pos=0.2, 

verticalalignment='center' 

) 

plt.tight_layout() 

plt.show() 

 

Based on the above code, Fig. 6 presents the optimal solution of the traditional transportation 

problem in the form of a bipartite graph. 

 

 

Figure 6. Optimal solution of the traditional transportation problem as a bipartite graph  
(Source: own edition) 
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3.2. Solving a capacity-constrained transportation problem 

 

3.2.1. Mathematical model of the capacity-constrained transportation problem. The 

traditional model is extended with the following constraint, which defines that only a limited 

amount can be transported from each source to each sink. This can also be interpreted as a 

generalization of the capacity limitations of transport vehicles: 

∀ 𝑢: 𝑥𝑢𝑣 ≤ 𝛼𝑢𝑣
𝑚𝑎𝑥 , (17) 

where 𝛼𝑢𝑣
𝑚𝑎𝑥 defines the quantity that can be transported from source u to sink v. 

 

3.2.2. Optimization of a capacity-constrained transportation problem using a linear 

solver. The capacity-constrained transportation problem is still a linear programming 

problem, and therefore it can be solved using a linear solver. The first step of the solution 

involves entering the known parameters, the objective function, the constraints, and the 

decision variables into an Excel worksheet, as shown in Fig. 7. 

 

 

Figure 7. Excel worksheet for solving a capacity-constrained transportation problem using a 
linear solver (Source: own edition) 

The components of Fig. 7 contain the following data: 

• definition of source and sink identifiers (C2:J2 and B3:B10), 

• input of unit transportation costs (C3:J10), 

• available quantity of material at each source (K3:K10), 

• demand at each sink (C11:J11), 

• quantity limits on shipments from sources to sinks (C14:J21), 

• selection of cells for decision variables (N3:U10), 

• calculation of the objective function, which is the sum of the products of the unit 

transportation cost matrix and the decision variable matrix (V14), 

• for defining the first constraint, calculating the row sums of the decision variable 

matrix (V3:V10), 
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• for defining the second constraint, calculating the column sums of the decision 

variable matrix (N11:U11). 

 

As illustrated in Fig. 6, the optimal solution obtained by the linear solver results in a total 

cost of 49,486 EUR. 

The optimal solution of the capacity-constrained transportation problem is visualized as 

a bipartite graph in Fig. 8. 
 

 

Figure 8. Optimal solution of the capacity-constrained transportation problem as a bipartite 
graph (Source: own edition) 

3.3. Solving a time-constrained transportation problem 

 

3.3.1. Mathematical model of the time-constrained transportation problem. The basic 

model is extended with an additional constraint. This defines that each source has a specified 

availability time, and each sink has a known time window during which the demand must be 

fulfilled. Therefore, a source can only deliver to a sink if the availability and demand time 

windows overlap. This corresponds to the time interval intersection problem, as the feasible 

transportation time window can be determined as follows: 

∀ 𝑢, 𝑣: 𝑡𝑢𝑣
∗ ∈ [𝑚𝑎𝑥(𝜏𝑢

𝐵𝑚𝑖𝑛 , 𝜏𝑣
𝐹𝑚𝑖𝑛), 𝑚𝑖𝑛(𝜏𝑢

𝐵𝑚𝑎𝑥 , 𝜏𝑣
𝐹𝑚𝑎𝑥)], (18) 

where 𝑡𝑢𝑣
∗  defines the time interval within which it is possible to transport goods from 

source u to sink v., 𝜏𝑢
𝐵𝑚𝑖𝑛  denotes the start time of availability for source u, 𝜏𝑢

𝐵𝑚𝑎𝑥 denotes 

the final time of availability for source u, 𝜏𝑣
𝐹𝑚𝑖𝑛  denotes the start time of the receiving 

capacity of sink v and 𝜏𝑣
𝐹𝑚𝑎𝑥 denotes the final time of the receiving capacity of sink v. 

This also means that source u can deliver to sink v only if the following condition is 

satisfied: 

𝑚𝑎𝑥(𝜏𝑢
𝐵𝑚𝑖𝑛 , 𝜏𝑣

𝐹𝑚𝑖𝑛) < 𝑚𝑖𝑛(𝜏𝑢
𝐵𝑚𝑎𝑥 , 𝜏𝑣

𝐹𝑚𝑎𝑥). (19) 

 

3.3.2. Optimization of a time-constrained transportation problem using a linear solver. 

The time-constrained transportation problem is still a linear programming problem and can 



66                                             Eszter Boglárka Zelena ‒ Tamás Bányai 

therefore be solved using a linear solver. The first step of the solution involves entering the 

known parameters, the objective function, the constraints, and the decision variables into an 

Excel worksheet, as shown in Fig. 9. 

The components of Fig. 9 contain the following data: 

• definition of source and sink identifiers (C2:J2 and B3:B10), 

• input of unit transportation costs (C3:J10), 

• available quantity of material at each source (K3:K10), 

• demand at each sink (C11:J11), 

• lower bound of the sources' availability time window, expressed in calendar days 

(C13:J13), 

• upper bound of the sources' availability time window, expressed in calendar days 

(C14:J14), 

• lower bound of the sinks' acceptable delivery time window, expressed in calendar 

days (K16:K23), 

• upper bound of the sinks' acceptable delivery time window, expressed in calendar 

days (L16:L23), 

• selection of cells for decision variables (O3:V10), 

• calculation of the objective function, which is the sum of the products of the unit 

transportation cost matrix and the decision variable matrix (W12), 

• to define the first constraint, calculating the row sums of the decision variable matrix 

(W16:W23), 

• to define the second constraint, calculating the column sums of the decision variable 

matrix (O24:V24), 

• for the third constraint, creating a binary matrix that, identifies which source-sink 

combinations allow transportation. 

 

 

Figure 9. Excel worksheet for solving a time-constrained transportation problem using a linear 
solver (Source: own edition) 
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The optimal solution of the time-window-constrained transportation problem is visualized as 

a bipartite graph in Fig. 10. 

 

 

Figure 10. Optimal solution of the time-constrained transportation problem as a bipartite graph 
(Source: own edition) 

3.4. Solving a time- and capacity-constrained transportation problem 

 

3.4.1. Mathematical model of the time- and capacity-constrained transportation 

problem. Based on the previously outlined models, the general model of the time- and 

capacity-constrained transportation problem can be formulated as follows: 

𝐶 = ∑ ∑ 𝑦𝑢𝑣 

8

𝑣=1

∙ 𝑥𝑢𝑣 → 𝑚𝑖𝑛.

8

𝑢=1

 (20) 

∑ 𝑟𝑢

8

𝑢=1

= ∑ 𝑝𝑣

8

𝑣=1

. (21) 

∀ 𝑢: ∑ 𝑥𝑢𝑣 

8

𝑣=1

= 𝑟𝑢 . (22) 

∀ 𝑣: ∑ 𝑥𝑢𝑣

8

𝑢=1

= 𝑝𝑣 . (23) 

∀ 𝑢: 𝑥𝑢𝑣 ≤ 𝛼𝑢𝑣
𝑚𝑎𝑥, (24) 

∀ 𝑢, 𝑣: 𝑡𝑢𝑣
∗ ∈ [𝑚𝑎𝑥(𝜏𝑢

𝐵𝑚𝑖𝑛 , 𝜏𝑣
𝐹𝑚𝑖𝑛), 𝑚𝑖𝑛(𝜏𝑢

𝐵𝑚𝑎𝑥 , 𝜏𝑣
𝐹𝑚𝑎𝑥)], (25) 
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3.4.2. Optimization of a time- and capacity-constrained transportation problem using a 

linear solver. The time- and capacity-constrained transportation problem is still a linear 

programming problem, and therefore it can be solved using a linear solver. The first step of 

the solution involves entering the known parameters, the objective function, the constraints, 

and the decision variables into an Excel worksheet, as shown in Fig. 11. 

The components of Fig. 11 contain the following data: 

• definition of source and sink identifiers (C2:J2 and B3:B10), 

• input of unit transportation costs (C3:J10), 

• available quantity of material at each source (K3:K10), 

• demand at each sink (C11:J11), 

• capacity limits for quantities transported from sources to sinks (Y3:AF10), 

• lower bound of the sources’ availability time window, expressed in calendar days 

(C13:J13), 

• upper bound of the sources’ availability time window, expressed in calendar days 

(C14:J14), 

• lower bound of the sinks’ acceptable delivery time window, expressed in calendar 

days (K16:K23), 

• upper bound of the sinks’ acceptable delivery time window, expressed in calendar 

days (L16:L23), 

• selection of cells for decision variables (O3:V10), 

• calculation of the objective function, which is the sum of the products of the unit 

transportation cost matrix and the decision variable matrix (W12), 

• to define the first constraint, calculating the row sums of the decision variable matrix 

(W16:W23), 

• to define the second constraint, calculating the column sums of the decision variable 

matrix (O24:V24), 

• for the third constraint, a binary matrix must be created, which determines in which 

source-sink pairs transportation is allowed. 

 

 

Figure 11. Excel worksheet for solving a time- and capacity-constrained transportation problem 
using a linear solver (Source: own edition) 
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As illustrated in Fig. 11, the optimal solution obtained by the linear solver results in a total 

cost of 54,304 EUR. 

The optimal solution of the time- and capacity-constrained transportation problem is 

represented as a bipartite graph in Fig. 12. 

 

 

Figure 12. Optimal solution of the time- and capacity-constrained transportation problem as a 

bipartite graph (Source: own edition) 

4. RESULTS 
 

The results presented in Table 1 show how different constraints affect the performance and 

cost-efficiency of transportation models. The basic model, which includes no capacity or time 

restrictions, achieves the lowest total cost of 43,398 EUR with 15 deliveries. This outcome 

is expected, as the lack of constraints allows for maximum flexibility in assigning shipments 

from sources to sinks. 

Table I. 
Comparison of numerical results (own edition) 

Modell 
Objective function 

[EUR] 

Number of routes 

[pcs] 

Basic model 43,398 15 

Capacity-constrained model 49,486 20 

Time-constrained model 45,207 15 

Capacity- and time- constrained model 54,304 19 

 

Introducing capacity constraints leads to a noticeable increase in both the objective function 

value and the number of deliveries. Specifically, the cost rises to 49,486 EUR, and the 

number of deliveries increases to 20. This suggests that limiting how much can be transported 
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between each source and sink pair forces the system to use more delivery routes, some of 

which are likely more expensive, thereby increasing the overall cost. 

In contrast, the time-constrained model results in a moderate increase in cost, reaching 

45,207 EUR, but the number of deliveries remains unchanged at 15. This implies that 

although time windows reduce flexibility, the system can still meet all demands using the 

same number of deliveries, possibly by shifting delivery timing without altering the routes 

significantly. 

The most complex case, which includes both time and capacity constraints, yields the 

highest cost at 54,304 EUR and results in 19 deliveries. This highlights the cumulative effect 

of combining multiple restrictions, where both temporal and quantitative limits reduce the 

solution space considerably, requiring costlier and more diverse logistics solutions. 

Overall, the comparison clearly demonstrates that additional constraints lead to higher 

total costs and more complex delivery structures. From a practical standpoint, decision-

makers must carefully balance logistical requirements and operational constraints to optimize 

costs while ensuring feasibility. The trade-offs highlighted by these models underline the 

importance of precise planning and constraint analysis in transportation optimization 

problems. 
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