
Advanced Logistic Systems – Theory and Practice, Vol. 19, No. 3 (2025), pp. 72-85. 
https://doi.org/10.32971/als.2025.017 

 

PREDICTIVE QUALITY ASSURANCE FOR LOGISTICS PROVIDER 
SELECTION: AN AI–MCDM FRAMEWORK 

 

GÁBOR NAGY1 ‒ SZABOLCS SZENTESI2 

 
Abstract: Quality assurance has evolved from being a competitive advantage to a baseline requirement 
in logistics services. Traditional multi-criteria decision-making (MCDM) approaches to selecting 
logistics service providers (LSPs) rely heavily on historical data and expert judgment, which may be 
unreliable in today’s volatile markets. This paper introduces an AI-enhanced MCDM framework that 
transforms predictive distributions of key quality indicators - such as on-time delivery, lead-time 
variability, damage rate, CO₂ emissions, and cost - into risk-adjusted preference scores. These scores 
are then aggregated using established methods (TOPSIS, PROMETHEE, VIKOR) to generate forward-
looking and risk-aware rankings. A PRISMA-guided systematic literature review (2019–2025) 
highlights three major gaps in the field: limited integration of predictive analytics into MCDM, 
insufficient treatment of tail risks and data drift, and weak attention to explainability. The proposed 
framework addresses these shortcomings and is illustrated through a case study that demonstrates how 
predictive, risk-sensitive rankings can enhance robustness and decision quality in LSP selection. 

Keywords: logistics service provider selection, predictive analytics, multi-criteria decision-making, 
quality assurance, machine learning. 

 

1. INTRODUCTION 
 

The selection of logistics service providers (LSPs) is a strategic decision with long-term 

implications for service reliability, customer satisfaction, total landed cost, and the overall 

competitiveness of supply chains. For decades, evaluation frameworks placed their primary 

emphasis on cost, delivery speed, and reliability, with multi-criteria decision-making 

(MCDM) methods widely applied to structure these trade-offs [1]. Yet contemporary supply 

chains have become more complex and exposed to frequent disruptions that necessitate 

broader perspectives. In particular, resilience, defined as the ability to maintain or quickly 

restore performance under disruptions, has become a central concern in an era of systemic 

fragility highlighted by global risk assessments [2].  

In parallel, benchmarking of trade logistics has expanded beyond traditional measures; 

the World Bank’s LPI 2023 integrates large-scale shipment-tracking evidence to capture end-

to-end speed and reliability, underscoring the centrality of timeliness and network fluidity in 

competitive performance [3]. At the same time, sustainability has moved to the forefront of 

logistics decision-making. Organizations are increasingly required to monitor and reduce 

their environmental footprint, with standardized approaches such as ISO 14083:2023 and the 

GLEC Framework v3.0 now providing methodologies for calculating greenhouse gas 

emissions across transport chains [4, 5]. These practices support compliance with the EU 

Corporate Sustainability Reporting Directive (CSRD), which requires firms to disclose 

climate-related impacts under the European Sustainability Reporting Standards (ESRS) [6]. 

Parallel to resilience and sustainability, digital capability has emerged as a decisive 

dimension in LSP selection. Providers are now expected to demonstrate robust IT integration, 
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data quality assurance, and exception handling capacity, enabled through interoperability 

standards such as GS1 EPCIS 2.0 and the Digital Container Shipping Association (DCSA) 

APIs [7, 8]. These capabilities have become particularly important in outsourcing and 

tendering, as they underpin the reliability of real-time visibility and the integrity of logistics 

event data.  

Nevertheless, despite these shifts, many organizations continue to rely on historical key 

performance indicators (KPIs) aggregated through multi-criteria decision-making (MCDM) 

approaches. Recent reviews confirm that LSP selection - even when extended to sustainable 

or hybrid variants - remains largely grounded in backward-looking evidence, which can be 

unstable in turbulent environments [9]. The literature on supply chain viability and predictive 

analytics confirms that decisions based on historical snapshots often fail under such 

conditions, especially when confronted with concept drift in predictive models and KPI 

distributions [10, 11]. To address this challenge, the present study introduces an integrated 

framework that combines predictive quality assurance with established MCDM techniques. 

The framework is designed to produce risk-aware, auditable, and future-oriented evaluations 

of logistics service providers by embedding distributional forecasts into preference scoring, 

incorporating Conditional Value-at-Risk (CVaR) penalties to reflect risk aversion, and 

strengthening explainability through tools such as SHAP values. In doing so, the approach 

aligns sourcing strategies not only with traditional cost and service objectives but also with 

the emerging imperatives of resilience, sustainability, and digital governance [12-14]. 

 

2. SYSTEMATIC LITERATURE REVIEW (PRISMA-GUIDED) 
 

To provide a comprehensive foundation for this study, a systematic literature review (SLR) 

was conducted. The main objective of the review is to synthesize and critically evaluate the 

existing body of research on logistics provider selection, quality assurance mechanisms, and 

the integration of advanced decision-making approaches. Particular attention is given to the 

intersection of artificial intelligence (AI) and multi-criteria decision-making (MCDM) 

methods, as these techniques are increasingly recognized as enablers of predictive and 

sustainable quality management. By identifying prevailing methodologies, emerging trends, 

and critical research gaps, the review establishes a knowledge base that supports the 

development of an AI–MCDM framework for predictive quality assurance in logistics 

provider selection. The review process was designed and conducted in accordance with the 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

guidelines. Applying this structured approach ensures methodological rigor, transparency, 

and reproducibility throughout the stages of identification, screening, eligibility, and 

inclusion of studies. Following PRISMA not only enhances the credibility and robustness of 

the findings but also provides a clear and systematic overview of the research landscape. This 

evidence-based foundation enables the study to advance both academic understanding and 

practical applications in predictive quality assurance for logistics networks. 

 

2.1. Protocol and search strategy 

 

The review followed the PRISMA 2020 reporting guidance [15]. Searches were conducted 

in Scopus, Web of Science, IEEE Xplore, and ScienceDirect, complemented by targeted 

queries in Google Scholar, covering the period 2019–2025 (final search: 31 August 2025). 

Search strings combined logistics outsourcing, 3PL/LSP selection, and evaluation terms with 
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multi-criteria decision analysis (MCDA/MCDM) techniques (e.g., AHP, TOPSIS, 

PROMETHEE, VIKOR, fuzzy, neutrosophic), and predictive/AI/ML terms (e.g., “on-time 

delivery,” “delay prediction,” “forecast*”). Inclusion criteria were: (i) English language, (ii) 

peer-reviewed journal articles or high-quality conference papers, (iii) clear focus on LSP/3PL 

selection/evaluation or logistics-relevant supplier selection, and (iv) methodological content 

involving MCDA and/or AI/ML forecasting. Exclusion criteria removed editorials, purely 

conceptual notes, and studies lacking empirical or algorithmic implementation. Such rigorous 

scoping is consistent with recent systematic reviews in logistics decision-making research 

[16]. 

 

2.2. Screening results 

 

The reviewed studies can be clustered into four representative streams. The first group 

encompasses hybrid fuzzy MCDA approaches, where classical multi-criteria methods are 

extended with fuzzy logic to address linguistic ambiguity and imprecision in LSP/3PL 

selection [17-19]. A second cluster involves works that integrate machine learning into 

MCDA frameworks, enabling data-driven ranking and evaluation of suppliers and logistics 

providers [20-22]. A third stream focuses on predictive modelling of delivery delays and 

logistics KPIs, which generate valuable insights into risk and disruption probabilities, 

although their results are rarely propagated into MCDA ranking procedures [23-25]. Finally, 

a fourth category consists of topical and bibliometric reviews of outsourcing and reverse 

logistics selection, which synthesize trends and provide broader perspectives on the evolution 

of logistics decision support [26-28]. Taken together, these four research directions indicate 

a clear shift of the field toward hybrid, data-driven approaches in supplier and LSP 

evaluation. 

 

2.3. Thematic synthesis 

 

MCDA core: Classical methods such as AHP/ANP for weight derivation and TOPSIS, 

PROMETHEE, and VIKOR for ranking/compromise remain dominant. Variants 

incorporating fuzzy, neutrosophic, or rough set extensions are increasingly used to handle 

linguistic ambiguity and uncertainty [17, 20]. Criteria trends: Beyond cost, reliability, and 

lead time, recent studies highlight resilience, sustainability metrics (e.g., CO₂ per parcel), and 

IT/API integration performance as critical dimensions [18, 21, 23]. 

Predictive uptake: Applications of ML in logistics focus on forecasting on-time delivery 

(OTD), delay risks, and disruption probabilities. However, probabilistic predictions are rarely 

propagated into MCDA ranking models, limiting risk-sensitive decision support [22, 24]. 

Governance and transparency: Few studies explicitly address explainability (e.g., SHAP, 

LIME) or rank stability analyses, despite increasing attention to decision accountability in 

sustainable supply-chain governance [25, 27]. 

 

2.4. Research gaps 

 

Based on the synthesis of prior studies, four major research gaps can be identified. 

The first concerns distribution-to-preference mapping. Existing studies tend to rely on 

point estimates of KPIs when constructing decision preferences, even though predictive 

models frequently yield full probability distributions. The methodological challenge of 



75          Predictive quality assurance for logistics provider selection: An AI–MCDM framework 

transforming probabilistic forecasts into MCDA-consistent value functions has rarely been 

addressed, which constrains the ability of current frameworks to support genuinely risk-

aware decision-making under uncertainty [19, 22]. 

A second gap arises in risk-aware aggregation. Popular aggregation methods such as 

TOPSIS, PROMETHEE, and VIKOR are typically applied to deterministic or expected 

values, while the integration of tail-risk measures such as Conditional Value-at-Risk (CVaR) 

remains uncommon. Moreover, systematic calibration of stakeholder risk aversion within 

these ranking procedures is still underdeveloped. Consequently, existing models often fail to 

align ranking outcomes with an organization’s actual tolerance for service disruptions or SLA 

violations [21, 24]. 

The third gap relates to explainable integration. Although explainable AI techniques such 

as SHAP and LIME are increasingly applied in logistics forecasting, their outputs are rarely 

connected to MCDA components such as criteria weighting or ranking justification. The lack 

of end-to-end frameworks that link model interpretability with structured decision-making 

weakens both auditability and transparency in LSP evaluations, despite growing institutional 

and regulatory demands for explainable and accountable AI in supply chains [25, 27]. 

Finally, there is a gap in ensuring robustness under drift. Very few studies explicitly 

stress-test the stability of rankings under dynamic conditions such as concept drift, demand 

volatility, or shifting forecast horizons. Techniques like bootstrap resampling, sliding time 

windows, and horizon sensitivity analysis are largely absent from the literature. This 

omission is critical, as logistics networks operate in environments where data distributions 

evolve rapidly, making ranking robustness a prerequisite for reliable and resilient sourcing 

decisions [23, 28]. 

 

3. MODEL AND METHODS: AI-ENHANCED MCDM FOR PREDICTIVE QA 
 

3.1. Workflow 

 

The proposed framework integrates predictive analytics with multi-criteria decision-making 

(MCDM) to achieve predictive quality assurance in LSP selection. Fig. 1 outlines the six 

stages. 

This modular design follows contemporary AI-MCDM hybrid frameworks in supply 

chain decision-making [29]. 

 

3.2. Criteria and weights 

 

Representative criteria are selected to capture economic, operational, environmental, and 

digital performance dimensions: 

• Cost per parcel (↓), 

• On-time delivery (OTD) rate (↑), 

• Lead-time variance (↓), 

• Damage rate (↓), 

• Flexibility (↑), 

• CO₂ emissions per parcel (↓), 

• IT/API uptime (↑), 

• Exception handling quality (↑). 
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Weights wi are derived via AHP/ANP or fuzzy AHP to account for linguistic uncertainty, 

subject to ∑ 𝑤𝑖𝑖 = 1. The use of fuzzy pairwise comparisons for logistics evaluation is well 

established in the literature [30, 31]. 

 

 

Figure 1. Workflow of the Proposed Predictive QA–MCDM Framework 

3.3. KPI forecasting 

 

For each LSP j and criterion i, predictive distributions 𝑌 𝑖𝑗,𝑡+ℎ̂ are generated using ensemble 

forecasters (gradient boosted trees, random forests) for mixed tabular inputs, or sequence 

models (LSTM, Temporal CNN) for time-series signals. Forecast validation employs rolling-

origin evaluation and nested cross-validation, optimizing MAE/RMSE for central tendency 

and pinball loss for quantiles. 

Exogenous drivers (seasonality, promotions, weather, holidays, network changes) are 

incorporated as covariates, reflecting best practices in predictive logistics modelling [32-34]. 

Predictive distributions rather than point estimates are emphasized, aligning with calls for 

distributional forecasting in supply chains [35]. 
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3.4. Value functions and risk adjustment 

 

Forecasted KPI distributions are mapped to [0, 1] preference scores via monotone value 

functions gi(⋅), with lower and upper bounds (Li, Ui) derived from policy targets or historical 

percentiles. 

• For benefit criteria (1): 

𝑔𝑖(𝑦) = min {1,max {0,
𝑦 − 𝐿𝑖
𝑈𝑖 − 𝐿𝑖

}}. 

 

(1) 

• For cost criteria (2): 

𝑔𝑖(𝑦) = 1 − min {1,max {0,
𝑦 − 𝐿𝑖
𝑈𝑖 − 𝐿𝑖

}}. 

 

(2) 

To incorporate risk sensitivity, unfavourable distribution tails are penalized via Conditional 

Value-at-Risk (CVaR) at level α (3): 

𝑆𝑗
risk =∑𝑤𝑖

𝑖

 𝐸! [𝑔𝑖! (𝑌𝑖𝑗̂)] − λ𝑅𝑗(α) 

 

(3) 

where Rj(α) aggregates per-criterion CVaR penalties and λ≥0 captures stakeholder risk 

aversion. Tail-risk integration in MCDM has recently been advocated for logistics and 

financial decision systems [36, 37]. 

 

3.5. Aggregation and ranking 

 

Risk-adjusted score matrices are aggregated with three canonical MCDA methods: 

• TOPSIS: ranking based on relative closeness to the ideal solution, 

• PROMETHEE: net preference flows via pairwise outranking, 

• VIKOR: compromise solution balancing group utility and individual regret. 

 

This method-agnostic design ensures compatibility with different organizational decision 

cultures and risk attitudes [38,3 9]. 

 

3.6. Robustness and explainability 

 

To ensure transparency and resilience of the framework: 

• Bootstrap resampling of input windows provides rank stability intervals. 

• Sensitivity analysis on weights wi and risk-aversion parameter λ highlights decision 

leverage points. 

• Explainability is achieved through SHAP values linking predictive features (e.g., 

route length, depot congestion) to forecasted KPIs, documented in model cards for 

auditability. 

 

This responds directly to the growing demand for explainable and auditable AI in supply 

chain decision systems [40-42]. 
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4. ILLUSTRATIVE CASE 
 

To demonstrate the applicability of the proposed framework, we consider a parcel logistics 

outsourcing scenario involving five competing LSPs operating across a rolling 12-month 

observation window. The evaluated KPIs comprise: 

• On-time delivery (OTD) measured at D+1 and D+2 service levels, 

• Damage rate, 

• Lead-time variance, 

• CO₂ emissions per parcel, and 

• Cost per parcel. 

 

Forecasting of KPIs is performed using gradient boosting models with quantile loss, enabling 

distributional prediction of service quality. Naïve seasonal benchmarks serve as baselines to 

validate predictive skill, following accepted forecasting evaluation practices in logistics 

analytics [43, 44]. Prediction horizons span 1-3 months, reflecting tactical sourcing decisions. 

Weights (wi) for the criteria are elicited from three senior logistics managers using the 

Analytic Hierarchy Process (AHP), ensuring managerial alignment and traceability of 

preference structures [45]. Risk parameters are set at α=0.9 for Conditional Value-at-Risk 

(CVaR) estimation and λ calibrated against service-level agreement (SLA) tolerances, 

enabling explicit mapping of organizational risk appetite to source decisions [46]. 

 

 

Figure 2. LSP Ranking Shifts: Historical vs Predictive QA-MCDM 

Results (illustrative). Fig. 2 presents comparative rankings of LSPs under the proposed 

predictive QA-MCDM framework versus a purely historical KPI-based ranking. Shifts are 

observed in two providers: one improves due to predicted OTD gains, while other declines 

due to forecasted CO₂ intensity deterioration. Fig. 3 displays a tornado sensitivity diagram, 

showing OTD and cost per parcel as the most influential drivers of ranking volatility. Such 

visualization supports managerial sense-making in procurement negotiations [47]. 

 



79          Predictive quality assurance for logistics provider selection: An AI–MCDM framework 

 

Figure 3. Tornado Sensitivity Analysis of Criteria 

5. MANAGERIAL IMPLICATIONS 
 

The proposed AI-enhanced MCDM framework carries substantial managerial implications 

for procurement, risk management, and sustainability governance in logistics outsourcing. 

Four key domains are particularly relevant. 

First, proactive quality assurance emerges as a major benefit. Traditional LSP selection 

practices often rely on historical averages of KPIs, which fail to anticipate future deterioration 

in performance. By embedding predictive models into the evaluation pipeline, procurement 

managers can base their decisions on anticipated service trajectories rather than backward-

looking data. This allows them to proactively exclude providers at risk of declining 

performance in terms of on-time delivery, damage rates, or CO₂ emissions, thereby protecting 

customer satisfaction and ensuring continuity of operations. Such anticipatory assurance is 

consistent with the growing emphasis on supply chain viability, where the focus shifts from 

reactive recovery to proactive adaptation [48]. 

Second, the framework supports risk-sensitive contracting. The incorporation of risk 

aversion parameters (λ, α) into the ranking mechanism enables decision-makers to align 

sourcing outcomes with their organization’s risk appetite. Firms with strict service-level 

agreements may choose higher λ values to penalize tail-risk events such as extreme delays or 

excessive variability in lead times. By contrast, organizations that prioritize cost efficiency 

may adopt more risk-neutral parameter settings. This approach provides a quantifiable, 

contract-aligned mechanism for embedding risk management policies into supplier selection, 

moving beyond qualitative assessments of reliability [49]. 

A third implication concerns transparent governance. By explicitly documenting decision 

criteria, weighting schemes, and forecasting assumptions, the framework strengthens 

auditability and compliance in procurement. Such transparency enhances internal governance 

- through board-level oversight and cross-functional alignment across procurement, 

operations, and sustainability departments - while also meeting external accountability 

requirements. Regulatory frameworks such as ISO 9001:2015 (quality management systems) 

and the EU Corporate Sustainability Reporting Directive (CSRD) explicitly call for auditable 
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and traceable decision processes. Aligning LSP selection with such compliance-oriented 

governance models reduces exposure to both regulatory penalties and reputational risks [50]. 

Finally, the framework promotes sustainability alignment. Forecasted CO₂ intensity per 

parcel provides managers with the ability to integrate carbon-aware considerations into 

tendering and contracting. By accounting not only for historical but also for projected 

emissions, procurement decisions can prioritize LSPs whose anticipated environmental 

performance matches corporate climate targets and disclosure requirements under the 

European Sustainability Reporting Standards (ESRS). In doing so, procurement becomes 

directly linked to the firm’s ESG agenda, supporting both regulatory compliance and 

competitive differentiation. For organizations competing in carbon-sensitive markets, such 

capability functions as a strategic lever for green branding and stakeholder trust [51]. 

 

6. LIMITATIONS AND FUTURE WORK 
 

Despite the methodological contributions of this study, several limitations remain that 

provide fertile ground for future research. 

A first limitation relates to data quality and drift. The predictive fidelity of the framework 

is inherently dependent on the stability and accuracy of input data. Concept drift - where the 

statistical properties of service processes evolve over time - poses a major threat to model 

validity. Pandemic shocks altering demand distributions, geopolitical disruptions reshaping 

routing patterns, or regulatory changes tightening emission limits can all render previously 

trained models obsolete. Addressing this challenge requires continuous monitoring, re-

calibration, and potentially automated drift detection mechanisms [52]. Without such 

safeguards, the predictive QA component risks degradation, undermining the credibility of 

supplier rankings. 

A second limitation involves the challenge of cold-start LSPs. The framework presumes 

sufficient historical observations to train reliable KPI forecasters. However, new or niche 

logistics service providers, often central to innovation-driven markets, lack such records and 

face the “cold-start” problem. Tackling this issue may require advanced transfer learning 

techniques that borrow knowledge from related providers or regions, or hierarchical Bayesian 

models that share statistical strength across similar network nodes [53]. Future work should 

explicitly test these approaches to ensure that innovative but data-scarce providers are not 

systematically disadvantaged in sourcing decisions. 

Third, the scope of optimization in the current framework is limited by its sequential 

pipeline-forecast, risk adjustment, and MCDA aggregation. While this modular structure is 

transparent, it may fail to capture cross-criterion trade-offs holistically. A promising 

alternative is to embed forecasting outputs directly into a multi-objective optimization 

(MOO) problem where cost, service quality, and sustainability objectives are jointly 

optimized under uncertainty. Recent advances in evolutionary multi-objective algorithms and 

robust stochastic optimization highlight potential directions for such integrated formulations 

[54]. 

A further limitation is the reliance on static weighting. At present, the framework applies 

weights derived via AHP/ANP that capture managerial preferences at a given point in time. 

Yet criterion salience is not fixed: sustainability metrics may gain prominence under new 

regulatory regimes, while cost may dominate during recessionary cycles. Incorporating 

uncertainty-aware dynamic weighting schemes that adapt to predictive distributions or 
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external triggers could enhance resilience and adaptivity. Research on time-varying MCDA 

models offers valuable building blocks for such developments [55]. 

Finally, the framework requires cross-industry validation. While the illustrative case in 

this study focuses on parcel logistics, broader validation is essential to assess generalizability. 

Application to cold-chain logistics - with its temperature-control risks - bulk commodities, 

where cost-volume trade-offs dominate, and maritime logistics, characterized by global route 

volatility, may reveal new dynamics and constraints. Cross-industry empirical studies could 

stress-test the robustness of the framework, highlight sector-specific extensions, and improve 

its scalability as a universal procurement decision tool [56]. 

 

7. SUMMARY 
 

This paper has presented a modular framework that integrates predictive analytics with multi-

criteria decision-making (MCDM) in order to support risk-aware, auditable, and 

sustainability-aligned logistics service provider (LSP) selection. Whereas conventional 

approaches predominantly rely on historical KPIs, the proposed methodology emphasizes the 

anticipation of future service trajectories by incorporating probabilistic KPI forecasts into 

evaluation and ranking. This predictive orientation represents a significant step forward for 

quality assurance in logistics outsourcing, since it enables decision-makers to identify 

potential risks and opportunities before they materialize.  

The study contributes conceptually by combining predictive quality assurance (PQA) 

with structured MCDM techniques, thus bridging two research traditions that have so far 

developed largely in parallel. Methodologically, the framework operationalizes predictive 

QA through a six-stage workflow that unifies criteria weighting, data consolidation, KPI 

forecasting, risk-adjusted preference scoring, aggregation, and robustness analysis. By 

embedding Conditional Value-at-Risk (CVaR) and explainable AI (e.g., SHAP) within the 

MCDM pipeline, the model ensures both sensitivity to tail-risk events and interpretability of 

results. Empirically, the illustrative case of five parcel LSPs demonstrated that predictive 

quality assurance can substantially alter rankings compared to historical evaluations: 

anticipated improvements in on-time delivery or forecasted deterioration in CO₂ intensity 

shifted contracting preferences in ways that would not have been visible using retrospective 

metrics alone.  

Furthermore, sensitivity analysis revealed that on-time delivery and cost exerted the 

strongest influence on rank stability, providing procurement managers with clear insights into 

which levers shape sourcing outcomes most decisively. Beyond its methodological and 

empirical contributions, the framework also advances governance practice by aligning 

sourcing decisions with regulatory and compliance mandates, including ISO 9001 for quality 

management and the EU CSRD/ESRS for sustainability disclosure. The explicit articulation 

of criteria, weights, and forecasts strengthens auditability and transparency, thereby 

enhancing both internal accountability and external legitimacy. In doing so, the framework 

positions itself at the intersection of predictive analytics, risk management, and sustainable 

supply-chain governance, addressing critical gaps such as distribution-to-preference 

mapping, tail-risk integration, and robustness under concept drift.  

Looking ahead, further research should focus on embedding multi-objective optimization 

directly on predictive distributions to capture trade-offs among cost, service, and 

sustainability objectives under uncertainty. The incorporation of dynamic weighting schemes 

that adapt to changing contexts and the extension of empirical validation beyond parcel 
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logistics to sectors such as cold-chain, bulk, or maritime transport would enhance the model’s 

generalizability and resilience. Taken together, the findings demonstrate that predictive 

quality assurance, when integrated with MCDM, has the potential to redefine LSP selection 

by aligning anticipatory analytics with structured decision-making, thus embedding 

resilience, transparency, and sustainability into the strategic core of logistics outsourcing. 
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