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THE FOUCAULT-PENDULUM 
 

SÁNDOR SZALADNYA1 

 
Abstract: In the material handling, there are many machines in which the goods can swing during 
transport or loading. The greatest impact of this phenomenon is appearing during the operation of 
different cranes, where the goods are moving as a pendulum. In 1851, Jean Foucault presented a strand-
pendulum, which was used to demonstrate the rotation of the Earth. This Foucault-pendulum and its 
describing equations can help to understand the behaviour of the swinging bodies and the rules which 
influence their movement. In this paper, the author presents the importance and the essential formulas 
to describe the behaviour of a pendulum, using the data of the Foucault-pendulum built at the main 
entrance of the University of Miskolc as a reference object. 
Keywords: swinging, absorption, Coriolis-force, load-swinging 

 

1. INTRODUCTION 

In 1851, Jean Foucault presented a strand-pendulum, which was used to demonstrate the 

rotation of the Earth. This Foucault-pendulum and its describing equations can help to 

understand the behaviour of the swinging bodies and the rules which influence their 

movement. In the material handling, there are many machines in which the goods can swing 

during transport or loading. The greatest impact of this phenomenon is appearing during the 

operation of different cranes, where the goods at the end of the lifting cable are moving as a 

pendulum. A Foucault-pendulum built in 2000 at the main entrance of the University of 

Miskolc [1], which is a suitable reference object to apply and analyse the pendulum-

movement. 

 

2. JEAN FOUCAULT 

Jean Foucault was born on 18 September 1819 in Paris, in a rich family. In his 10th year, he 

started his studies in the “Colleg Stanislas” in Paris, but because of his non suitable diligence, 

he was taught away form the school. After it, he finished his studies at private teacher. He 

also abandoned his medical study at the University of Paris due to a blood phobia. 
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Foucault started to work in 1844, in his 25th year, he was scientific reporter at a journal and 

dealt with the refraction and the determination of the transmission speed of the light. He and 

Armand Fizeau developed an apparatus with gears and rotating mirror to measure the speed 

of the light. The gyroscope is also Jean Foucault’s invention. 

In 1851, Foucault presented a 68 meters long strand-pendulum to the wide audience, 

which could be used to demonstrate the rotation of the Earth spectacularly. This pendulum 

as Foucault-pendulum was entered into the History. 

 

3. UNDAMPED PENDULUM MOVEMENT 

To describe the movement of a mathematical pendulum, we have to analyse the movement 

of a weightless and inflexible material point effected by the gravity force. In this analysis we 

are dealing with only the flat pendulum and aside from the effects of the Earth’s rotation [3]. 

Movement, location and data of the Foucault-pendulum built at the University of Miskolc 

can be seen in Figure 1 and 2. 

 

 

 

 

 

Data: 

• R = 6.378∙106 m 

• M = 48.1o 

• r = R∙cosM = 4259.4 km 

• calendar day:  

Tn = 24∙3600 = 86400 s 

• angular speed of the Earth:  

F = 7.268∙10-5 1/s 

-5

F

n

2×π 2×3.14 1
ω = = =7.268×10

T 24×3600 s
  

• gravity acceleration:  

g = 9.832 – 0.052∙cosM = 

= 9.81 m/s2 

 

Figure 1. Geometric data of the Foucault-pendulum [3] 

 

Basic equations to describe the movement of the pendulum: 

• moment of the inertia force calculated to the axis of rotation: 

2
2

2t

d
M m L

dt
=    (1) 

• moment of the weight force calculated to the axis of rotation:  

singM L m g = −     (2) 
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For small angles sin = , so 

t gM M=  (3) 

2

2
0

d g

Ldt


+    (4) 

2

0,
g

L
  = =  (5) 

2
2

2

d

dt


 = −   (6) 

Equation (6) is the differential equation of the undamped harmonic oscillation. 

 

 

 

 

Data of the pendulum at Miskolc: 

•  = 3–7o 

• length of the strand: 

L = 10.4 m 

• swinging mass: 

m = 42 kg 

 

Figure 2. Forces effect the pendulum [2] 

Dumped harmonic oscillation can be done by a body, if the size of the acceleration is 

proportional to the movement, but its direction is opposite. This kind of oscillation is valid 

for the mathematical pendulum. In our analysis we use Cartesian coordinate system. 

As it can be seen in Figure 2 and 3 (Figures are not scaled) L = 10.4m, N = h = 0.16m, d = 

0.016 m – diameter of the Charon-ring (see Figure 2), which localizes the motion of the 

pendulum. If the amplitude of the swinging is small, when x0/L = 0.052 and Z/L = 0.0014 values 

are small, the end point of the pendulum is approximately follow angle x (see Figure 3). 
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Figure 3. Effect of the Charon-ring 

 

Figure 4. Geometry of the Charon-ring 

 

Using the described values and 0 = 3o: 

/ 2
0.05

d
tg

N
 = =

  

3
0.5445

180
vI L m


=  =   

0 0sin 0.544x L m=  =
  

0 cos 10.385L L m=  =   

0 0.015Z L L m= − =
  1 2 0.542 /v g Z m s=   =   

Movement function of the pendulum in direction x – horizontal movement above the 

table- in time can be described by the next equation with acceptable approximation: 

2x x= −   (7) 

Equation (7) is a linear differential equation of the second order with constant 

coefficients, which is suitable to analyse the undamped pendulum movement. Its 

characteristic equation is 2 + 2 = 0, its roots are 1,2 = ± ·i. General solution of the 

differential equation is 

1 2( ) cos sinx t c t c t =   +    (8) 

If we apply equation (8) for the pendulum taking Figure 2 into consideration and 

determine the values of c1, c2 constants: 

( ) ( ) ( )1 2( ) sin cos
d

x t v t c t c t
dt

   = = −    +     (9) 
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If t = 0, x(0) = 0.544, v0 = 0, c2 = 0, then 0.971
g

L
 = = . 

Taking the above mentioned into account: 

( )1( ) cosx t c t=    (10) 

( )1( ) sinv t c t =     (11) 

 

Figure 5. Movement and velocity of the pendulum in time 

 

4. DAMPED PENDULUM MOVEMENT 

If the energy of the movement of the pendulum is absorbed by anything (e. g. friction), then 

we talk about damped pendulum movement. In this case the pendulum movement is 

proportional to the acceleration and the velocity, but its direction is opposite to both of them. 

 

4.1. Equations for damped pendulum movement 

Differential equation to describe the movement: 

2
2

2
2

d x dx
m m x s

dtdt
 = −   −    (12) 

where 

‒ m – mass of the moving body [kg], 

‒ s – dumping coefficient. 

 

If we divide equation (12) by m and use the s/m = k marking, as a resistance factor, then  

2
2

2
2 0

d x dx
k x

dtdt
+   +  =  (13) 

where  ≥ 0 is a constant and k is a positive constant value. 

The characteristic equation of the homogeneous differential equation of the second order 

with constant coefficients is 
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2 22 0k  +   + =  (14) 

and its roots are 

2 2

1,2 k k = −  −  (15) 

If k < , i. e. 2 2 0k −  , then the roots of the characteristic equation are complex values, so 

2 2

1,2 0k i k = −   −   (16) 

This case will be used for the following analysis of the pendulum. 

In case of dumped movement, two other equations are required to determine the values 

of c1, c2 constants in the general solution: 

( ) ( )2 2 2 2

1 2( ) cos sink tx t e c k t c k t −   =   −  +  − 
  

 

 

(17) 

 

( ) ( )

( ) ( )

2 2 2 2

1 2

2 2 2 2 2 2 2 2

1 2

( ) cos sin

sin cos

k t

k t

d
x t k e c k t c k t

dt

e c k t k c k t k

 

   

− 

− 

 = −    −  +  −  +
  

 +  −  −   − +  −   −
  

 (18) 

It can be read from equation (17) and (18), that the pendulum movement is a periodic 

function in time, its amplitude is decreasing exponentially with the increasing of the t value, 

which results the damping effect. If we release the pendulum in state “0”, its movement will 

be as it can be seen in Figure 6 and 7. In case of small amplitude, x(290∙T) = 0,1 mm, the 

kinetic energy of the pendulum is so low, that the movement of the surrounding air can also 

affect the pendulum movement (v = 0.048 m/s). The value of the “k” factor used in the 

equations is calculated on previous observations, which will be corrected based on practical 

measures. 

 

Figure 6. Pendulum movement 

In the knowledge of the values of the constants, the damped pendulum movement and 

velocity can be depicted in time (Figure 6 and 7). 
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The values of the constants are k = 0.001,  = 0.971 1/s, c1 = 0.669, 1

2
2 2

k c
c

k

− 
=

−
. 

 

 

Figure 7. Velocity of the pendulum 

As the results of the above described process are not sufficient to the further analysis of the 

pendulum movement, so we have to introduce new equations. 

 

4.2. Determination of the period of the pendulum movement 

The period of the movement of the Foucault-pendulum built in Miskolc, based on the 

equations in the related literatures [5]: 

( )

2

22
0

1
4

1 sin

L
T d

g x






=  

− 
  (19) 

Applying the data of the pendulum ( = 3o-4o, L = 10.4 m, g = 9.81 m/s2,  = 0.971 1/s) 

and x = sin(0/2) the calculated period of the pendulum movement is T = 6.47 s. 

Determination of the period is even simpler, if  < 8o: 

2
L

T
g

=    (20) 

In this case, the calculated period of the movement is T = 6.469 s. 

We can establish that the period of the pendulum movement is not depending on the mass 

and the amplitude of the pendulum. It means that the same pendulums in length with different 

masses and amplitudes (small) on the same location of the Earth have the same movement 

period. This is the rule of isochronous time which was discovered by Galilei, which will be 

taken into account in the analysis of the damped pendulum movement, for the evaluation of 

the measuring results. Confirm this rule using equation (17) with suitable transformations 

and variable amplitudes: 
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( ) ( )2 2 2 21

1 1
2 2

( , ) cos sink t k c
x t c e c k t k t

k
 



− 
 − 

=   −  +  −  
− 

 (21) 

We can see in Figure 8, that the movement period is the same for all amplitude variations. 

 

Figure 8. Effect of the amplitude changing to the period of the movement  
k = 0.001,  = 0.971 1/s, T = 6.47 s 

4.3. Comparison of the calculated and measured values of the period of the pendulum 

movement, determination of the resistant factor 

Curves resulted by the equations described before show that after releasing, the kinetic energy 

of the pendulum is decreasing. To keep the pendulum in continuous moving, it is required to 

refill the energy, so on certain places, magnetic push have to be used. 

As our objective is to determine the value of the “k” resistant factor, so we realized our 

measuring after switching the magnet off. During the motion we measured the decreasing 

values of the amplitude of the pendulum. Starting value of the amplitude x0 = 0.669 m was 

at t = 0 s. 

Applying the results of the measures (Table I) and equations (17) and (18) we determined 

the real value of the t factor. Solving equation (17) with the new values we got Figure 9, 

where k = 0.002,  = 0.971 1/s, c1 = 0.669. 

As it was described before, the decreasing of the amplitude does not influence the period 

of the movement (Figure 8), so calculating the movement on integer multiples of the period 

x(n∙T) results an envelope for the decreasing of the amplitude (Figure 10). 

Calculated values of the movement are based on equation (17) and involved in Table II. 

Curve x(n, T) is the upper envelope of the x(t) function. This curve will be compared to the 

envelope based on the measured (x1) values (Figure 11). 

Last data of the measuring was t1 = 3600 s (556.4∙T), because at this point the kinetic 

energy of the pendulum was so low that the movement of the surrounding air effected it and 

the pendulum movement was transformed into spherical pendulum movement. 
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Table I. 
Measuring results 

Measure x1 [m] t1 [s] 

1. 0.669 0 

2. 0.64 120 

3. 0.625 300 

4. 0.61 360 

5. 0.6 480 

6. 0.588 540 

7. 0.575 660 

8. 0.563 780 

9. 0.544 900 

10. 0.525 1020 

11. 0.506 1200 

12. 0.485 1440 

13. 0.461 1680 

14. 0.438 1920 

15. 0.414 2160 

16. 0.398 2400 

17. 0.376 2640 

18. 0.357 2940 

19. 0.341 3180 

20.  3600 

 

 

Figure 9. Decreasing of the amplitude of the movement with the corrected k value 
x(0) =0.669 m, x(T) = 0.668 m, x(2·T) = 0.667 m, x(500·T) = 0.322 m 
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Results based on equation (17) have suitable similarity to the measured values (Figure 11), 

so the value of the resistant factor can be recalculated 

, 0.0002
s

k k
m

= =   

Table II. 
Calculated values of the upper envelope 

 x [m] t [s] 

1. 0.669 0 

2. 0.627 323.5 

3. 0.586 647 

4. 0.547 970.5 

5. 0.510 1294 

6. 0.474 1618 

7. 0.440 1941 

8. 0.408 2265 

9. 0.378 2588 

10. 0.349 2912 

11. 0.322 3235 

12. 0.296 3559 

13. 0.272 3882 

14. 0.249 4206 

15. 0.228 4529 

 

 

 

Figure 10. Upper envelope of the calculated amplitude values 
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Figure 11. Comparison of the measured and calculated values 

 

5. PENDULUM MOVEMENT ABOVE THE TABLE 

5.1. Influencing forces 

Figure 12 and 13 show the table and the above swinging pendulum located at the north side 

of the Earth [3]. The moving body (pendulum), related to the table, is influenced by not only 

the radial force but also another force which is an inertial force called Coriolis–force. In a 

rotating reference frame (see Figure 14), a force, perpendicular to the velocity, effects to the 

pendulum starting from point (1), which deflects it into point (2). This is the Coriolis-force. 
 

 

Figure 12. Forces effect the pendulum 
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In return phase, the same force influences the movement from point (2) to (3). The observer 

see that the plane of the pendulum movement does not change, but the table is moving. The 

movement of the table is proportional to the rotation of the Earth.  
 

 

Figure 13. Phases of the pendulum movement [3] 

 

Figure 14. Effect of the Coriolis-force 

In Figure 15, the changing of the location of the table and the pendulum through the rotation of 

the Earth can be followed. At starting of the pendulum movement (1) the time is zero (t = 0). 
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The time of the pendulum movement between point (1) and (2) is T/2. The value of the table 

movement can be calculated using Figures 12–15 with the following data: 

D – diameter of the circle followed by the end point of the pendulum [m]: D = 2∙A, 

A – amplitude of the pendulum movement [m], 

 – angular speed of the Earth [1/s]:  = 7.29∙10-5, 

1 – angular speed of the table [1/s], 

T – period of the pendulum movement [s]: T = 6.47 s, 

 = 48.1o. 

( )1 cos 90





= −   

( ) 5

1 sin 5.43 10   −=  =    

Based on Figure 13: 

1 1
2

T
s A  =     

The movement of the table during the period (T) is 2∙s1. 
 

 

Figure 15. Location of the table and the pendulum during the rotation of the Earth 

5.2. Coriolis-force 

In a rotating reference frame, the pendulum movement diverges from the table in right 

direction at the Northern Hemisphere, caused by the rotation of the Earth (Figures 13–15). 

The perpendicular movement is changing steadily from zero starting velocity. During short 

t times, to a close approximation, the Coriolis-force has to be taken as a constant value into 

consideration (see [5]). Acceleration of the Coriolis-force is 

2

2
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 
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
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where 

1s A t =    (23) 

A
t

v
 =  (24) 

Taking the above mentioned into account 

12cF m v =     (25) 

where 

Fc – Coriolis-force [N], 

s – movement [m], 

t – time [s]: t = T/n, 

A – amplitude [m], 

v – velocity of the pendulum [m/s], 

m – mass of the pendulum [kg]. 

 

5.3. Effect of the Coriolis-force to the pendulum movement 

The angular speed vector  can be decomposed into a horizontal 2 and a vertical vector 1. 

The absolute values of them are 

1 sin  =   (26) 

2 cos  =   (27) 

Suited to this, the Coriolis-force can also be decomposed into two components: 

1 2 1 22 2c c cF m v m v F F =    +    = +  (28) 

The first component means the force – arises on the pendulum moving in horizontal plane 

– tending to right direction which is perpendicular to the velocity of the Earth at the Northern 

Hemisphere. The second component is a vertical force in down or up direction, its effect is 

the changing of the weight of the moving mass. 

The pendulum moving in horizontal direction is tending to right direction from its path 

because of the rotation of the Earth and the Coriolis-force. The amount of the difference can 

be calculated taking the values in Figure 16 and 18 into consideration (L = 10.4 m, g = 9.81 

m/s2, m = 42 kg, G = m∙g, L0 = 10.38 m,  = 3.14, A = 0.669 m, 1 = 5.4275∙10-5 1/s). 

 

 

Figure 16. Velocity of the pendulum 
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Based on Figure 2, the energy equation of the pendulum movement can be described, from 

which the velocity of the pendulum (Figure 16): 

( ) 10.4 cos 10.38 2 9.81
180

v


 
  

=   −    
  

 (29) 

From Figure 17 the torque equations to point “0”: 

( )1 12 sinM m v m g L =    −     (30) 

2M m g k=    (31) 

sin
k

L
 =  (32) 

( ) sink L =   (33) 

Arranging the equations above and applying that 

1 2M M=  (34) 

( ) ( ) 1

L
k v

g
  =    (35) 

 

Figure 17. Forces on the pendulum 

 

Figure 18. Deviation of the pendulum 
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Applying equation (29), the diagram presented in Figure 18 is resulted. The distance from 

the origin is ( ) 50 3.64 10k m−=  . We can see in Figure 18 that during the continuous motion, 

the pendulum does not go through the origin, but the deviation is so small that the observer 

cannot sense it and see a straight moving. 

 

6. ANOTHER APPROACH OF THE MOVEMENT OF THE FOUCAULT-PENDULUM 

ABOVE THE TABLE  

In this approach, we add the Coriolis-force to the equations of the pendulum movement in 

the reference frame, and we analyse only small-amplitude-swinging of the pendulum, when 

x/L and y/L are so small values, that their higher powers are neglected, only the first powers 

are taken into account. In this approach, the endpoint of the pendulum is moving in a 

horizontal plane (see [3]). Based on Figure 1 and 12: 

5 1
48.1 7.29 10o

s
  −= = 

   

5

1

1
sin 5.4275 10

s
   −=  =    

The equations of the motion: 

2

2
2 sin

d x dy
x

dtdt
  =    +   (36) 

2

2
2 sin 2 cos

d y dx dz
y

dt dtdt
    = −    −    +   (37) 

2

2
2 cos

d z dy
g z

dtdt
  = − +    +   (38) 

2

2
0 0

dz d z g
z L

dt Ldt


−
= − = = =   

In equation (38), the component involving  is very small related to g, so it is negligible 

0
g

g L
L

 = − −  → = −   

Using this simplification, the equations of the motion are 

2

12
2 0

d x dy g
x

dt Ldt
−   +  =

 
2

12
2 0

d y dx g
y

dt Ldt
+   +  =  

(39) 

The equations above can be coupled in one complex equation: 

u x i y= +   (40) 

Suited to (40), the equation of the motion is 

2

12
2 0

d u du g
i u

dt Ldt
+    +  =  (41) 

Taking Figure 15 into account 

1' ' '
i t

u x i u u e
 

= +  =   (42) 
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After simplification and taking the starting conditions into consideration 

( ) ( )1 1' cos ' sinx x t y t =   +    (43) 

( ) ( )1 1' sin ' cosy x t y t = −   +    (44) 

( ) ( ) ( ) ( )1 1 1 1' cos sinx x t t y t t =   −    (45) 

( ) ( ) ( ) ( )1 1 1 1' sin cosy x t t y t t =   +    (46) 

These equations mean that the axes x’ and y’ are rotating in a horizontal plane with 1 

angular speed, related to the observing x-y system. Transformations and simplifications can 

be seen in reference [1]. 

In (x’, y’) system, if t = 0, then 

1

' '
' ' 0 0 0.669

dx dy
x A y A a A m

dt dt
= = = =  = =   

' cos
g

x a t
L

 
=    

      

' sin
g

y b t
L

 
=    

 

  

5
51

0 1

0

5.4275 10
, 0.6 3.739 10

0.971

g b L
b a

L a g


 



−
−

= =   =  =  =    

Applying the above described values and substitute them into the (43) and (44) equations, 

the (47) and (48) equations are obtained, which describes the pendulum movement as a 

function of the swinging period (see Figure 19 and 20). 

( ) ( ) ( ) ( ) ( )1

1 0 1 0

0

cos cos sin sinx t A t t t t


   


 
=     +     

 
 (47) 

( ) ( ) ( ) ( ) ( )1

1 0 1 0

0

cos sin sin cosy t A t t t t


   


 
=      −    

 
 (48) 

 

Figure 19. One single period of the pendulum movement 
(1) – start of the pendulum, y(0), (2) – y(T/2) = 1.054 · 10–4, (3) – y(T) = –2.107 · 10–4 
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Figure 19 and 20 present the movement of the pendulum in (x’, y’) plane, where L = 10.4 m, 

g = 9.81 m/s2, A = 0.669 m, 1 = 5.4275∙10–5 1/s, 0 = 0.971 1/s,  = 7.29∙10–5 1/s, T = 6.47 

s. 

 

Figure 20. Two periods of the pendulum movement (y(T/4) = 3.353 · 10–5) 

Transforming equations (45) and (46), Figure 21 is obtained, which shows that the pendulum 

is moving along an elliptic line (diagram is not scaled). 

 

Figure 21. Elliptic characterisation of the pendulum movement 
(1) – start of the pendulum, Y(0), (2) – Y(T/2), (3) – Y(T) 

In Figures 19–21, the pendulum is moving in (x’, y’) plane. The pendulum is horizontally 

rotating with 1 angular speed, where a = 0.669 m, b = 3.74∙10–5, 1 = 5.4275∙10–5 1/s, 0 = 

0.971 1/s,  = 7.29∙10–5 1/s, T = 6.47 s. 

( ) ( )1 0cosx t a t=    (49) 
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( ) ( )1 0siny t b t=    (50) 

( ) ( ) ( ) ( ) ( )1 1 1 1cos sinX t x t t y t t =   −    (51) 

( ) ( ) ( ) ( ) ( )1 1 1 1sin cosY t x t t y t t =   +    (52) 

Based on the figures the next thesis can be described: at a given geographical attitude 

„ψ” of the Earth, the pendulum movement – in case of small amplitudes – follows an elliptic 

line, and the axes of the ellipse are rotating in a horizontal plane with 1 angular speed in 

north-east direction at the Northern Hemisphere (see Figures 19–21). 

Figure 21 is not scaled, but it is suitable to demonstrate the elliptic movement of the 

pendulum. Based on the equations of Müller [3], and the previously defined values (L = 10.4 

m, g = 9.81 m/s2, a = 0.669 m, 1 = 5.4275∙10–5 1/s, 0 = 0.971 1/s, T = 6.47 s) 

5 4

1 3.739 10 1.995 10
L a

b a
g b

 −=   =  =    

Figure 22 shows the movement of the pendulum during the time “T”. The movement has 

elliptic character, but the smaller axis of the ellipse is so small that the observer cannot sense 

it and see a straight moving. 
 

 

Figure 22. Pendulum movement during the time “T” 
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7. SUMMARY 

Jean Foucault’s strand-pendulum, which was used to demonstrate the rotation of the Earth, 

can help to understand the behaviour of swinging bodies and the rules which influence their 

movement. As the material handling uses many machines, in which the units can swing 

during transport or loading, the analysis of the pendulum movement can result many 

important data for the design of the handling machines and processes. The theoretical method 

described by the author was confirmed by the data and measuring values of the Foucault-

pendulum built in the main reception hall of the University of Miskolc. A possible sequel can 

be the analysis of bridge cranes, where the pendulum movement directly influences the 

operation parameters and causes operation problems. It is especially true for automated 

bridge cranes. 
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