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Abstract: In the paper a shortest-time routing problem is considered. A decision- maker has to choose 
one of  several possible routes for a vehicle which should reach its  destination as soon as possible. The 
time required  to reach the destination depends on the chosen route and the state of traffic flow in the 
region. Under the assumption that the latter can be reasonably categorized into finite number of states 
game-theoretic models  of the  problem are proposed. Some examples and practical questions are 
discussed as well 
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1. Introduction 
 
The transportation industry facilitates the movement of goods for the purposes of trade, 
production and consumption. The  transportation systems are expected to satisfy several 
quality factors, such as cost, time of the service and many others. To meet various 
expectations connected with transportations decision makers have to face many different 
problems in a number of different situations. One of the oldest and most famous problems in 
the area is the so-called Traveling Salesman Problem (TSP) which in terminology of the 
graph theory can be expressed as follows: given a set of n vertices (interpreted as customers) 
and weights for each pair of vertices (interpreted as cost of the travel), find a roundtrip of 
minimal total weight visiting each vertex exactly once. Recent developments and some 
interesting variants of TSP are presented in [1.]. Another class of problems in which 
customers are visited by a number of vehicles are called the Vehicle Routing Problem 
(VRP). As a matter of fact the VRP is a generalization of the TSP.  The problem is to design 
routes for the vehicles so as to meet given constraints and objectives minimizing a given 
objective function (total cost, time, length of the route etc).  The VRP has been an especially 
active and fruitful area of research over last decade. There have been numerous technological 
advances and new concepts that are of considerable interest to researchers and decision – 
makers. Now the Vehicle Routing Problem is the core of logistics distribution. The state of 
the art is presented and discussed  in the book [6]. Some new ideas for modelling and solving 
vehicle routing problems are connected with the application of the game theory methods. 
Such approach to various conflict and cooperative situations arising in the VRP and other 
transportation problems  can be found  in papers [2., 3., 4., 5., 8., 9., 10.] 
In our paper we consider a routing problem  where a decision- maker has to choose one of 
several possible routes for a single vehicle which should reach its  destination as soon as 
possible. We assume that the time required  to reach the destination depends on the chosen 



72 
 

route and the state of traffic flow in the region. We also assume that, according to decision 
maker knowledge, the obstacles  connected with the traffic can be reasonably categorized 
into finite number of significantly different cases which will be referred to as states of 
nature. In such a situation we formulate  zero-sum game against nature as a model of the 
problem. Next we discuss various concepts of the solution of the game and their 
interpretations.  In the last section we present an example and address some practical 
questions. 
 
2. Problem statement and its game-theoretic model 
 
Let  v0,v1 denote the vertices: the depot (source) and the destination (customer),  respectively. 
The  two vertices are connected via n edges  (routs) denoted d1, d2,..,dn. So, we have parallel 
link network. The decision-maker has to choose one of the routs  for the vehicle.  The 
objective is the minimization of the transportation time, however the time required to reach 
the destination depends not only on the chosen  route but also on the state of nature which 
can be one of the possible  variants denoted s1, s2,…,sm, respectively. The estimated time 
necessary to reach the goal via route di , i=1,2,…, n, when the sj, j=1,2,…,m,  is the true state 
of nature is denoted Tij. We assume that the decision maker does not know which state of 
nature is true (or will be during the travel). Such situation can be considered as a game 
against nature. In the game theory terminology S={s1, s2,…, sm} are called strategies for 
nature while the edges D={d1, d2,..,dn} are called strategies of the decision maker. Such a 
game is usually denoted by < S,D,T >,  where the loss function T is given by the following 
m-by-n matrix 
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Traditionally the strategies of the nature can be identified with the rows  and the strategies of 
the decision maker can be identified with the columns of the matrix T.  
 
2.1. Solution concepts  
 
In non trivial variants of the matrix T (and such are usually connected with the routing 
problem) there are no obvious choices for the decision maker. The best choice in the case 
where the state of nature is si may be the worst when true state is sk.  The game theory 
provides us with various concepts of possible solutions in such a case. First it  propose to use  
so-called minimax strategies.  The strategy  *kd  (i.e. the route with the index k*) is called 
minimax (or safety) strategy if it satisfies the following condition, see [7.]: 
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Using such a strategy the decision maker can guarantee himself  that his loss does not exceed 
the value ik

ik
TV maxmin* = . The value V* is called the upper value of the game. So using the 

minimax strategy the decision maker assures that the maximum possible travel time (with 
respect to different states of nature)  is as short as possible. In other words, when using the 
strategy he knows that the travel time will not exceed the value V*, whereas if he use other 
strategies he risks that the travel time will be longer.  
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In many situations it is possible however to propose better solution. It can be achieved by 
introducing so-called mixed strategies. From the mathematical point of view a mixed strategy 
is a probability distribution on the set D of the decision-maker strategies d1,..,dn (which from 
now  on will be referred to as pure strategies). So, the mixed strategy of the decision maker 
is a vector  β = [β1, β2, …, βn] with nonnegative coefficients βi, i=1,...,n,  satisfying the 
condition: 
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Similarly we can introduce the mixed strategies for nature as vectors α= [α1, α2, …,αm] with 
nonnegative αi, i=1,...,m, satisfying  
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Then the expected loss T̂  for the decision maker is defined as  
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Such a game will be denoted < S*,D*, T̂ >.  
The minimax mixed strategy β* for the game < S*,D*, T̂ > is defined by the following 
condition: 

),(ˆmaxmin*),(ˆmax βαTβαT
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It appears that the upper value ),(ˆmaxmin* βαT
αβ

=v for the game < S*,D*, T̂ > is very often 

less than the upper value V* for the game < S,D,T >.  
 
2.2. The game with travel time limit 
 
In real world transportation problems we may also deal with another interesting problem. It 
concerns the situations where  the vehicle does not have to reach its destination as soon as 
possible but it cannot be late with its cargo and that is what really matters (e.g. because the 
customer will be absent and  additional, relatively large, cost will be generated). To model 
such a situation we assume that a given travel time limit t* is known to the decision maker 
and both the decision maker and the customer will be satisfied if the vehicle travel time is 
less than t* - if so, it will be called a success. In such a case  it  would be reasonable for the 
decision maker to choose a strategy which maximizes the probability of  the success.  
Such a problem can be represented by a game < S,D,T01 > , where the matrix T01 is given as 
follows: 
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Now we can adopt both above described concept of the solution of the game. Minimax 
mixed strategy for the game < S*,D*, 01T̂  > guarantees the decision maker highest 
probability of the success. 
In the next section we present a numerical example illustrating the presented  concepts of the 
solution.  
 
3. Numerical example and final remarks 
 
Let us consider a problem where the matrix T is as follows: 

 
It follows from the game  matrix that the decision maker has five different routes to choose 
between and he  distinguishes nine significantly different states of the traffic flow which may 
occur during the travel and which influence the travel time. The states may be connected 
with the car accidents (their frequency) or some cultural or social events which are 
unpredictable to the decision maker.  In the matrix the travel time is given in minutes. So, for 
example, if the second route is chosen and the third nature state is true then, according to the 
game matrix, the travel will last approximately T32=60 min.  
Minimax pure strategy. To solve the game in pure strategies we should find the maximum 
travel time for each route, i.e. the maximum in each column of the matrix T. We obtain the 
values 80,60,55, 60 and 80. Thus the minimax pure strategy is to choose the third route and 
the upper value V*=55.  It means that using the third strategy decision maker assures that the 
travel will not last longer than 55 minutes.  
Minimax mixed strategy. To solve the game in mixed strategies one should adopt a 
computer software or built equivalent linear programming problem, see [7.]. For our game 

we obtain the following minimax mixed strategy: )
7
2,0,

7
5,0,0(  and the upper value 

V*=335/7≅ 47,9 min. It means that the third route should be chosen with the probability 5/7, 
the fifth with probability 2/7 and remaining routes should be omitted . From practical point 
of view the probabilities may be interpreted as frequencies of particular choices  in the 
situation where the distance is covered many times (for example in every week – seven days 
- during two days the route number three should be chosen and during five days the fifth 
one.). If so, the decision maker assures that the maximum travel time does not exceed 47,9 
minutes (on average). We see that the time is about seven minutes shorter then when using 
the pure minimax strategy. 
Solution of the problem with travel time limit. Now let us consider our problem in the 
case where a travel time limit t* is given. It means that the distance must be covered in time 
that does not exceeds the limit and if so, it is of no importance how many minutes it will 
take. To solve such a problem matrix T01 must be constructed. Let us assume that t*=50. 
Then the matrix T01  is as follows, see Eq. 3:  

25 30 35 40 30
25 30 35 60 80
65 60 55 50 30
35 50 45 60 50

T = 35 40 55 60 30
70 50 55 55 30
30 45 40 45 30
30 35 40 55 40
80 35 40 45 30
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0 0 0 0 0
0 0 0 1 1
1 1 1 0 0
0 0 0 1 0

T01 = 0 0 1 1 0
1 0 1 1 0
0 0 0 0 0
0 0 0 1 0
1 0 0 0 0  

 
To obtain the solution in mixed strategies we use the computer software and obtain the 

minimax mixed strategy in this case: )0,
2
1,0,

2
1,0( . The upper value for this game is v*=1/2 . 

So, the optimal strategy tell us that we should choose in turn the first and third route with 
equal frequency 50% (e.g. every second day) and we should not take into account the first , 
third and fifth ones. Such strategy assures that with probability 1/2 the vehicle reach the 
destination in time. It is interesting to observe that  the strategies  which should be chosen in 
previous problem, should be omitted in this case (namely routes number three and five) 
Our example is very simple  because of its illustrative character.  In real world application 
the number of possible routes  may be larger as well as the number of states of the nature. 
However in many situations it is possible to obtain the data which enable us to form the 
matrix T. Then the proposed approach may be adopted to obtain suitable solution of the 
transportation problem.  
Sometimes it is also possible that the decision maker has some prior information about the 
probabilities  of the particular states of the nature (e.g. frequencies they occur with). It would 
lead to Bayes , robust or empirical Bayes formulation of the problem.  
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