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Abstract: optimization means finding the best solution among several alternatives. Optimization can 
be performed an all engineering fields. There are two examples show the application opportunities at 
logistic systems. One of them is the traffic light control and the other one is a sugar drying system. 
Both of them show the efficiency and necessity of optimization to reduce waiting time and energy. 
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1. Background of optimization 
 
In the optimization process for an engineer it is important to know the behaviour of the 
system and the structure well. It is as important to have a reliable optimization technique to 
find the optimum. 
In our practice on structural optimization we have used several techniques in the last 
decades. We have published them in our books and gave several examples as engineering 
applications (Farkas & Jármai [1., 2., 3.]). Most of the techniques were modified to be a good 
engineering tool in this work. 
The general formulation of a single-criterion non-linear programming problem is the 
following  
minimize     Nxxxxf ,...,,      )( 21 ,       (1) 
subject to               Pxg j ,...,2,1j    ,0)( =≤ ,       (2) 

           MPPixhi ++== ,...,1    0)( ,      (3) 

f(x) is a multivariable non-linear function, gj(x) and hi(x) are non-linear inequality and 
equality constraints, respectively. 
In the last two decades some new techniques appeared e.g. the evolutionary techniques, like 
Genetic Algorithm, GA by Goldberg [4.], the Differential Evolution, DE method of Storn & 
Price [5.], the Ant Colony Technique (Dorigo et al. [6.]), the Particle Swarm Optimization, 
PSO by Kennedy & Eberhart [7.], Millonas [8], the Artificial Immune System, AIS (Farmer 
et al. [9.], de Castro & Timmis [10.], Dasgupta [11.] and the response surface technique 
Egorov [12.]. Some other high performance techniques such as Leap-frog with the analogue 
of potential energy minimum (Snyman [13.]), Snyman-Fatti method [14.] and the Harmony 
Search technique have also been developed. 
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2. Traffic light control optimization 
 
The first application is the traffic light control optimization. Can we optimise for all 
conditions? Is a determined optimum is useful in other circumstances? In a complex city 
road system, which is populated with various road users the relations between traffic 
control and commuters are very important. Physical detection of passing road users and 
improved traffic light control algorithms are to be combined to optimize traffic flow. At a 
given infrastructure one cannot pre-set the algorithm to all possible road combinations. The 
aim of the controller program is to detect the number of road user, the traffic situation and to 
implement an optimization to reduce waiting time. Different driving policies and different 
control techniques are shown in the Green Light District program [15.]. We have used the 
program to evaluate and control the Zsolcai gate district traffic in Miskolc and made 
comparisons with parametric investigations.  
Traffic in a city is very much affected by traffic light controllers [16.]. It may happen that one 
is waiting for a red light when all the other drive lanes are free of traffic. Firstly one has to 
model an infrastructure of a city, secondly the behaviour of different road users must be able 
to be simulated and thirdly on all intersections where traffic lights are active, there can be 
made active and evaluated a certain traffic light controller [17.]. The interaction between 
road users and traffic lights in a situation leads to certain waiting times (or travel times) of 
road users. By conducting experiments with the simulator these times can be measured and 
optimized [18]. Since unnecessary waiting can be frustrating, there is research going on to 
make traffic controllers more intelligent. This can be done in different ways: 

(1) the use of better sensors to asses the traffic situation, 
(2) the use of optimization algorithms for traffic light given a certain realistic traffic 

situation. 
 
At the traffic simulator there are three factors play an important role: 

(1) the program must be generic enough to model the infrastructure of different cities, 
(2) the simulation must be able to simulate the behaviour of different types of road 

users, of course cars must drive to a destination, but it should also be possible to 
simulate bikes, pedestrians and busses, 

(3) by running simulations one has to be able to find differences in the traffic light 
algorithms performance. These differences much be expressed in average waiting 
times for a vehicle. 

 
Road users have a certain starting point and a destination. They follow a route to travel from 
the beginning to the end. This route can be calculated by a shortest path algorithm, but also 
can be learned by a learning algorithm. Traditional light controllers use an algorithm to 
determine which lights to set to green for a certain time, after which other lights get set to 
green etc. 
Among the different types of algorithms there are some self leaning algorithms, which seem 
to get the best results. These algorithms make use of the knowledge of how many cars are 
waiting at each traffic light. The learning algorithms learn from the advantage to be gained 
(expressed in the amount of lowered total waiting time) to set certain lights to green. At the 
hand of the test results one can see what controller works best and which traffic situations 
gives the best result. Non-learning algorithms are also available, to make comparisons 
possible.  
Road users choose their next lane when crossing a junction so to minimize probable waiting 
time at the next junction. If a next lane has traffic lights, a co-learn value is requested from 
the traffic light control algorithm, if it is the kind to compute co-learning values. Along with 
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this the road users sends a value for itself to the controller so other road users may benefit 
from it. 
Co-learning will greatly improve the distribution of road users on a map with many possible 
shortest paths (say, a grid-like infrastructure), but will have little effect if there are few 
possibilities or the traffic load is too high to distribute much. 
All intersections are assumed to be equal, i.e., there are no main roads in the network where 
the traffic lights have a higher priority. 
Traffic jam is the most extensively studied traffic phenomenon. Traffic jams can emerge 
because of various different reasons. Most often traffic jams are observed at bottlenecks, e.g. 
lane-reductions or crossings of highways. At bottlenecks the capacity of the road is locally 
reduced thereby leading to the formation of jams upstream traffic. Downstream the 
bottleneck, typically, a free-flow region is observed. In addition, traffic accidents, which also 
lead to a local reduction of the capacity of the highway, can give rise to traffic jams. 
At the University Utrecht they have developed an Intelligent Traffic Light Control System 
[15.] which was applied and slightly modified by us.  
 
2.1 Driving policy 
 
Road users condense at an edge node with the intention of reaching another node. For this 
purpose they must follow the roads that comprise a minimum distance to that node. These 
paths are either pre-calculated after map creation or learned during simulation. Learning 
yields best results for complex maps where no best setting is evident, but is demanding on 
the hardware A driving policy will point a road user every time a decision has to be made to 
a lane, which is not full, is reachable by following the direction rules, and brings the road 
user closer to its destination. 
Driving policies have less influence on the flow of traffic than traffic light controllers, 
because in keeping with realistic possibilities, drivers know less about the status of a city 
than a centralized traffic light control. Optimizing values locally in regard to the adjacent 
lanes is always less effective than taking into account the whole environment, but is currently 
more realistic. Advances in car communicational systems that give a driver an overview of 
the traffic density in the area should give quite different results. 
 
2.2 Reinforcement learning  
 
Reinforcement Learning (RL) enables an agent (for example a car) to learn from interacting 
with an environment through a trial and error process and learn for the obtained feedback. It 
can be used to control an agent who has to solve a particular task in an environment. 
Examples are learning to play games, robot control, elevator control, and network routing. 
Important issues are exploration to gather interesting experiences for the agent, function 
approximation to generalize over experiences, multi-agent reinforcement learning, and 
solving partially observable Markov Decision Problems.  
In reinforcement learning the transition P and reward functions R are a-priori unknown. 
Therefore, the agent has to learn a policy by interacting with the environment that provides 
feedback about the goodness of particular state-action pairs. Reinforcement learning 
algorithms usually learn to update the Q-function after each performed action.  
 
2.3 The basic cycle of a reinforcement learning agent is: 
 

1. Perceive the current state: s,t 
2. Use the policy to select an action: at = π(st), 
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3. Receive a reward rt and examine the new state st+1 after the action was performed, 
4. Update the Q-function (the action evaluation function) using the information (st, at, rt, 

st+1), 
5. Set t = t + 1. 

 
Usually, the Q-function is initialized to all zero-values, and therefore the initial policy is 
completely random. By exploring the results of actions, and learning the best (current) policy 
from these, the reinforcement learning agent stochastically improves its behaviour. 
 
2.4 Q-learning 
 
Several reinforcement learning algorithms exist. The most commonly used algorithm is 
Qlearning [19]. Q-learning does not use a model of the environment and updates the Q-
function after each step using the following equation: 
 
    Q(st, at) = Q(st, at) + α(rt + γV (st+1) − Q(st, at))      (4) 
 
where 0 < α < 1 is the learning rate, V is the maximum of Q. If the learning rate is decreased 
after each time-step in a specific way, and all state-action pairs are tried infinitely often, the 
use of Q-learning converges to the optimal Q-function and policy for Markov decision 
problems. 
 
2.5 Evaluation tools 
 
The data collected from running a simulation on a map can be displayed and analyzed in a 
number of ways: 

- In-view statistics can be toggled on, which will colour junctions to indicate the 
average waiting time there. The darker the colour, the longer road users have to wait 
there. 

- largest waiting queue, with the id of the junction, 
- largest average junction waiting time, with the cycle count, 
- total number of road users arrived, with count. 

 
2.6 The statistics window contains precise data on the current simulated map 
 

- list of edge nodes with id, arrived road users, current queue length, average trip 
time, and average trip waiting time o list of junctions with id and average junction 
waiting time (best to be overviewed by toggling in-view statistics,  

- totals of number of road users arrived, current queue length, average trip time, 
average waiting time and average junction waiting time, 

 
A tracking window to track one of the following: 

- total waiting queue length,  
- average trip time,  
- average trip waiting time 
- average junction waiting time. 
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2.7 Application of the program for the city Miskolc [20] 
 
Figure 1 shows an application of the program for the city Miskolc at Zsolcai gate district. We 
consider that 500 cycles equal to 1 hour. At nodes 9 and 7 (main end nodes) the output 
frequency for car is 0,05 and for bus is 0,01. The random algorithm shows the relatively long 
queues and waiting times. Regarding the stating point to be midnight, at 6 o’clock in the 
morning we get following result shown on Figure 1. At the other nodes the frequency set as 
0,001 for car and 0,0001 for bus. 
 

 
Figure 1. Entrance of Miskolc at Zsolcai gate district, the traffic system using Random 

algorithm between 0 – 6 am. 
 
On Figure 2 the traffic jam is visible from 6 to 9 am. (4500 cycles) using Random algorithm. 
Random algorithm mean a randomly controlled system, so it be regarded as uncontrolled. 
The two main edge nodes output capacity are 0,2 for car, 0,04 for bus. At other nodes 0,01 
for car, 0,001 for bus. The increment of queue length is visible. 
 
On Figure 3 the cleaning the road system form the traffic jam is made by Genetic algorithm 
type ACGJ-3. The new control system solves the problem. Genetic algorithm is very popular 
in optimization, since it can solve non-convex problems [4]. 
 
Genetic algorithm has its own limits at a given road system. If we increase the number of 
road users, non of the algorithm can avoid traffic jam. The two main edge nodes output 
capacity in this case are 0,8 for car, 0,01 for bus (8000 cycles). The only solution is to 
decrease the road users. In daily life the traffic jam in the morning can be cleaned by the 
control algorithm when later the users are less.  
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Figure 2. Entrance of Miskolc at Zsolcai gate district, the traffic system using Random 

algorithm between 6 – 9 am. 
 

 
Figure 3. Entrance of Miskolc at Zsolcai gate district, cleaning the traffic system using 

Genetic algorithm between 6 – 9 am. 
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3. Sugar drying system optimization 
 
At various industrial fields there can be found those equipment, systems, which work 
properly, but their service is not optimal. They do not save material and energy. Checking 
their service we can elaborate some control possibilities for the existing equipment, which 
lead to safer service using less energy and material. In this paper we investigate the operation 
of a Roto-Louvre-type drier cylinder. The purpose of the drier is drying and cooling sugar. 
The investigation consists of two phases: the first is to build a simplified global heat 
engineering model describing the service of the drier. This model makes it possible to find 
relation between dried material and the air-flows making drying and cooling. On the other 
hand this heat engineering model was built into an optimization algorithm, where the scope 
was to minimize the total used energy. The optimization makes it possible to find the energy 
minima when several input and output parameters are changing. 
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Figure 4. The service of a Roto-Louvre-type drier cylinder for sugar 
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As an example we have calculated the service optima considering various outside air 
temperatures (varying in a wide range). Both global heat engineering model and optimization 
technique are applicable finding optimum service conditions for drying other materials. 
The service of a Roto-Louvre-type drier cylinder for sugar can be seen in Figure 4. The 
feeding of wet sugar is at the left side of the circulating drier. The movement of the sugar is 
in axial direction, while on the lower bottom of the drier cylinder bin through special holes 
warm and cold air is blown into the cylinder, through the sugar layer. First the sugar is in 
contact with the warm air, gives the surface humidity to the air, while its temperature is 
decreasing. Moving the sugar toward, there are cold air is blown into the cylinder, through 
the sugar layer. The result is the decreasing of the sugar temperature, its degree of humidity 
practically constant.  
 
3.1 Heat engineering model of drier cylinder 
 
Our aim was to elaborate that kind of model, where we can find connection between the 
parameters of incoming and outgoing sugar and the volume and temperature of warm and 
cold air. Finding these equations we can control the process and build into the optimization 
algorithm. 
Main features of the heat engineering model: 

• We assume the cylinder to be heat insulated, neglecting heat loss during the process. 
• We have built a global model, so we do not consider chancing of drying in time and 

place. (Our empirical results showed that the drier cylinders are usually over-
designed, it means that the sugar looses most of its surface humidity at the first half 
of the drier (dr1) as it shown in Figure 4. We have elaborated a detailed heat 
engineering model for design of driers (Szabó [21.]). For the optimization, 
described below, the global model was applicable. In this case the main scope was 
not the analysis of the processes in the drier). 

• In the model the drying and cooling phases are separated. 
 
On Figure 5 the chancing of degree of humidity is visible. 
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Figure 5. The thermal schemata. 
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The incoming iwm ,  volume of warm air and the icm ,  volume of cold air humidities are iwx ,  

and icx ,  respectively. So the necessary dry air volumes are: 
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3.2 Drying phase 
 
In the drying phase the incoming wet and hot sugar meets with the warm air arriving at the 
drier cylinder bin surface. The air takes the surface humidity of the sugar. The evaporating 
humidity means taking heat energy from sugar cause thermal decrement at sugar-air mixture 
(Imre [22]). When evaporation ended before the end of the drying phase there can be 
temperature increment at the sugar, depending on the temperature of sugar and warm air . 
This process is shown on the first diagram of Figure 4. 
At the drying phase we assume the followings: 

 At the end of the drying phase the temperature of the sugar-air mixture is equal, 
its value is the following 

     owos ttt ,,1 ≅≅ .        (6) 
 

 At the end of the drying phase the sugar has lost its surface humidity, so its 
degree of humidity is decreasing to the inner one 

     osξξ ,1 =          (7) 
 

(Vice versa the drying warm air degree of humidity is increasing to a value 1,1 wxx = ). 
 
3.3 Cooling phase 
 
In the cooling phase the sugar, which has lost its surface humidity is in contact with the cold 
air. In this phase we assume the followings: 

 At the end of the cooling phase the temperature of the sugar-air mixture is equal, its 
value is the following 

     ocos ttt ,,2 ≅≅ .        (8) 
 

 At the cooling phase the degree of humidity of the sugar is constant, its value is 

osξ , . It means, that the degree of humidity of the cold air also constant, its value is 

cx . 
 
3.4 Air mixture after drier cylinder 
 
Air from drying and cooling phases mix leaving the drier cylinder. Equations for this mixture 
are the followings: 

• Humidities: 
      ( ) ccwmcw xmxmxmm ⋅+⋅=⋅+ 1  .         (9) 

• Heat energy values: 
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3.5 Heat engineering calculation 
 
We can establish a calculation process, finding the connection between incoming and 
outgoing materials volumes and qualities. Calculation is made, what are known properties, 
what are unknowns. In this specific case we describe a calculation, which is important to 
practice and where the degree of humidity of the outgoing sugar is prescribed with a value 

os,ξ . The volumes and the quality of the incoming sugar and air are given. Unknowns are the 
outgoing sugar and air humidity and temperature. 
 
3.6 Optimization of the drying process 
 
Considering the previous heat engineering assumption, our aim was to solve drying and 
cooling of sugar, coming from centrifuge, using the least energy possible. This process is 
going on with the outside air, according to the outside conditions (Jármai & Szabó [23.]). 
Investigate the problem in details. The drying and cooling air-moving is made by three 
ventilators, in the warm-air-line a heat exchanger produces warm air. The scheme of the 
system is visible on Figure 6. The three ventilators and the steam heating form an energy 
system. The task is to optimize the service of this system. The minimum energy consumption 
can be determined for the drying process due to the volume and degree of humidity of the 
incoming sugar and the quality of the outside air. We should find the optimum warm and 
cold air volume and the necessary temperature of the warm air. Solving this problem the 
characteristic lines of the ventilators )(qpt∆  and )(qη are known, which belong to air 
temperature Ta=20oC. We assume, that the )(qpt∆  characteristic lines depend on the 
behaviour of the transported gas on a known way, but the )(qη  characteristic lines are 
independent from the gas condition.  
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We are looking for the minimum of the total power [24.]: 
 Given parameters: 

 to , po , xo ,  i.e. state of the environment, the drying-cooling air 
comes from, 

 isisis ξtm ,,, ,,  , i.e. behaviour of the incoming sugar. 
 Prescribed:  

 osξ ,  , i.e. the allowable degree of humidity of the sugar at 
storage. 

 Variables:  
 tw , qw , i.e. temperature and volume of warm air, for which 

there are limits given: 
isiwo ttt ,, ≤≤   , 

max,min, www qqq ≤≤  (good efficiency service region of 
the ventilator). 

 Constraints:  
 qc , mq , i.e. those quantities, for which there are limits given: 

max,min, ccc qqq ≤≤  (good efficiency service region 
of the ventilator), 

max,min, mmm qqq ≤≤  (good efficiency service region 
of the ventilator). 

 
The equations above were built into the Rosenbrock's Hillclimb optimization algorithm 
(Farkas & Jármai [1.]). This can be made easily with a small correction of the calculation. 
Optimization can be made in different conditions. We can investigate the drying process due 
to different degrees of humidity of the incoming sugar. Chancing the capacity of the drying 
cylinder, i.e. the volume of the incoming sugar we can investigate its effect on the process. In 
our example we have investigated how drying process chancing with the outside air 
temperature. This is an interesting problem in sugar beet treatment. This is a campaign in 
autumn and at the beginning of winter. The outside temperature can be relatively high in this 
period of the year and when winter comes, it is very cold sometimes. 
 
Our investigated example is as follow: 

• conditions of the environment: 
po=1,038 bar,  ϕo=61.3% ,  the temperature is between -10oC ≤ to ≤23oC ; 
• the incoming sugar volume, temperature and degree of humidity: 

4,11, =ism kg/s,     ts,i=55oC,     ξ,s,i = 6,8g/kg ; 
• the prescribed temperature and degree of humidity of the outgoing sugar:  

ts,o=32oC, ξ,s,o =0.15g/kg ; 
• the limits are as follows: 

 isiwo ttt ,, ≤≤  ,        4 m3/s ≤ qw, qc ≤10 m3/s ,  8 m3/s ≤ qm ≤16 m3/s. 
 
We have determined the optimum process to a given temperature to which vary on a given 
range. The results can be found on Figure 7. On the horizontal axes of figure there is the 
temperature of the environment. On Figure 7 the changing of cold and warm air volume flow 
can be seen. 
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Conclusion 
 
The examples show, that optimization is useful in logistic system design. The program is 
able to evaluate the traffic control system of a city and to optimize traffic lights. Using 
different inputs of road users, we can simulate the different situations during a day. We made 
comparisons using Random technique and the Genetic algorithm, to optimise the traffic 
flow. With this technique one can reduce the waiting queue, time and the consumed fuel, 
saving a lot of money and increase the capacity of the road system. 
For the sugar drying system it is visible, that for the given parameters the drying and cooling 
can not make with air temperature greater than to=23oC , because the induction ventilator 
volume flow qm would be greater than its limit capacity 16m3/s. The cold air ventilator 
volume flow qc has also reached its upper limit 10m3/s at 22oC temperature. From the figure 
it is visible, that for to<15oC temperature the volume flows qc and qm are at the lower limit 
4m3/s. This shows the overdesign. Less volume flow is not possible, because practical 
experiences show, that this volume flow is necessary for fluttering and mixing sugar. 
Temperature changing is a characteristic behaviour, that due to temperature to<15oC cooling 
is necessary, the temperature of incoming warm air tw,i should be greater then temperature of 
the environment to=tc,i. On this figure both drying air temperature t1 at the end of the drying  
 

 
Figure 7. The changing of air volume flow. 

 
phase and outgoing air temperature tm are marked. The three ventilator total power is the 
following  

m,ac,aw,avent PPPP ++=  
 

heating power is Ph and the addition of these two powers is Pt . It is visible, when there is 
heating of air is going on, its power is significant, because of its nominal value. We can 
calculate the behaviour of the sugar, the energy consumption of the system. Optimizing it we 
could find minimum energy consumption. 
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