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Abstract: The paper is devoted to a shortest-time routing problem. A decision-maker has to choose one 
from several possible routes for a vehicle which should reach its destination as soon as possible. The 
time required to reach the destination depends on the chosen route and the state of traffic flow in the 
region and is considered as a random variable. Under an assumption that the probability distribution 
function of the random traffic flow depends on states of the nature which can be reasonably categorized 
into finite number of classes a game-theoretic approach is proposed and discussed. Then to solve the 
problem some global optimization procedure combined with Monte Carlo simulations is adopted. 
Under some additional assumptions about the route time distributions several examples are solved. 
 
Keywords: vehicle routing problem, shortest-time criterion, global optimization, Monte Carlo 
simulations. 
 
 
1. Introduction 
 
The transportation industry facilitates the movement of goods for the purposes of trade, 
production and consumption. The transportation systems are expected to satisfy several 
quality factors, such as cost, time of the service and many others. To meet various 
expectations connected with transportations decision makers have to face many different 
problems in a number of different situations. An important class of the problems is a class of 
so called Vehicle Routing Problems (VRP). Recent results and questions arising in this field 
are presented and discussed in the book [5.]. Some new ideas for modelling and solving 
VRPs are connected with the application of the game theory methods. Such approach to 
various conflict and cooperative situations arising in the VRP can be found in papers [1., 3., 
7., 8., 10.]. 
In this paper we consider a routing problem where a decision- maker has to choose one from 
several possible routes for a single vehicle which should reach its destination as soon as 
possible. We assume that the time required to reach the destination depends on the chosen 
route and the state of traffic flow in the region. Following the approach proposed in [6.] we 
formulate zero-sum matrix game against nature as a model of the problem.  Next we assume 
that the entries of the game matrix are random variables with stochastic parameters 
depending on states of nature characterized by various types of the obstacles connected with 
the traffic. We also assume that, according to decision maker knowledge the states can be 
reasonably categorized into finite number of significantly different cases. Such a problem 
can be written down as a matrix game with random entries. However, in this situation an 
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optimal solution (so called safety strategy) cannot be found directly with the help of the usual 
game theory methods. Thus in order to compute the approximation of the optimal strategy 
we propose to make use of a global optimization procedure based on the algorithm of the 
evolutionary search with soft selection. To obtain the values of the goal function for the 
procedure we perform Monte Carlo simulations of possible realizations of the considered 
random game. In the last section we present an example and address some practical 
questions. 
 
2. Problems statements and their game-theoretic models 
 

In this part of the paper we state two routing problems which are considered in the sequel. 
First one is the shortest-time routing problem the second is the routing problem with travel 
time limit. 
 
2.1. Shortest-time routing problem (STRP) 
 

Let v0,v1 denote the vertices: the depot (source) and the destination (customer), respectively. 
The two vertices are connected via n edges (routs) denoted d1, d2,..,dn. So, we have parallel 
link network. The decision-maker has to choose one of the routs for the vehicle. The 
objective is the minimization of the transportation time, however the time required to reach 
the destination depends not only on the chosen route but also on the state of nature which can 
be one of the possible variants denoted s1, s2,…,sm, respectively. The estimated time 
necessary to reach the goal via route di , i=1,2,…, n, when the sj, j=1,2,…,m, is the true state 
of nature is denoted Tij. We assume that the decision maker does not know which state of 
nature is true (or will be during the travel). Such situation can be considered as a game 
against nature. In the game theory terminology S={s1, s2,…,sm} are called strategies for 
nature while the edges D={d1, d2,..,dn} are called strategies of the decision maker. Such a 
game is usually denoted by < S,D,T >,  where the loss function T is given by the following 
m-by-n matrix 
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The possible states of nature (“strategies” of the nature) can be identified with the rows and 
the decision maker strategies can be identified with the columns of the above matrix T. 
 
2.2. Solution concepts  
 

Here we present briefly some fundamental solution concepts connected with the zero-sum 
games. They can be found in many text-books, e.g. in [9.].  
In non trivial variants of the matrix T there are no obvious choices for the decision maker. 
The best choice in the case where the state of nature is si may be the worst when the true 
state is sk and we do not know which of the states is true (or: “chosen” by the nature). The 
game theory provides us with various concepts of possible solutions in such a case. First 
concept is to use so-called minimax or safety pure strategies. The strategy *kd  (i.e. the route 
with the index k*) is called minimax (or safety) pure strategy if it satisfies the following 
condition: 

ik
ikik

i
TT maxminmax * =  (2) 
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Using such a strategy the decision maker can guarantee himself that his loss does not exceed 
the value ik

ik
TV maxmin* = . The value V* is called the upper value of the game.  

In many situations it is possible however to propose better solution. It can be achieved by 
introducing so-called mixed strategies. From the mathematical point of view a mixed strategy 
is a probability distribution on the set D of the decision-maker pure strategies d1,..,dn . So, the 
mixed strategy of the decision maker is a vector β = [β1, β 2, …, βn] with nonnegative 
coefficients βi, i=1,...,n, satisfying the condition: 
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Similarly we can introduce the mixed strategies for nature as vectors α= [α1, α2, …,αm] with 
nonnegative αi, i=1, ..., m, satisfying  
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Then the expected loss T̂  for the decision maker is defined as  
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Such a game will be denoted G1=< S*,D*, T̂ >.  
The minimax mixed strategy β* for the game G1 is defined by the following condition: 
 

),(ˆmaxmin*),(ˆmax βαTβαT
αβα

=  (3) 

It appears that the upper value ),(ˆmaxmin* βαT
αβ

=v for the game < S*,D*, T̂ > is usually less 

than the upper value V* for the game < S,D,T >. It is well-known that such a zero-sum 
games can be solved by constructing an equivalent linear programming problem, see e.g. 
[8.].  
 
2.3. Routing problem with travel time limit (RPTTL) 
 

In real world transportation problems we may also deal with another interesting problem. It 
concerns the situations where the vehicle does not have to reach its destination as soon as 
possible but it cannot be late with its cargo and that is what really matters. Such problem was 
considered in [7.]. To obtain the game theoretic model for such a situation we assume that a 
given travel time limit t* is known to the decision maker and both the decision maker and the 
customer will be satisfied if the vehicle travel time is less than t* - if so, it will be called a 
success. In such a case it would be reasonable for the decision maker to choose a strategy 
which maximizes the probability of the a success.  
Such a problem can be represented by a game G2=< S,D,T10 > , where the matrix T10 is given 
as follows: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

)(...)()(
............

)(...)()(
)(...)()(

21

22221

11211

)0,1(

mnmm

n

n

TTT

TTT
TTT

111

111
111

T  (3) 



56 
 

where  
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However, this time the entries of the game matrix can be interpreted as a payoff (not a loss as 
previously) for the decision maker which he wants to maximize -   the probability  of  the 
success should be the greatest possible. So, the optimal safety strategy is now the maximin 
one . The strategy is defined as follows: 
 

),(minmax*),(min )0,1()0,1( βαTβαT
αβα

=  (4) 

 

3. Games with random entries 
 
Now let us consider a more realistic case where the entries of the matrix (1) are random 
variables with known distribution functions. Such a model reflects the situation where a 
given entry of the matrix represents a random travel time connected with a given route and a 
given state of nature. In such a case a solution of a game cannot be obtained via linear 
programming methods, because we would obtain so called chance constrained programming 
model, see [2.], with (usually) a very sophisticated probabilistic nature and thus the usual 
methods proposed for solving such problems, see e.g. [12.], can not be adopted. One of 
possible ways to handle the problem is to use Monte Carlo methods. Here we propose an 
approach described in [6.] where the Monte Carlo methods are combined with the global 
optimization procedure based on evolutionary search with soft selection. 
 
3.1. Monte Carlo simulations in finding the worst case assign to a given strategy 
 

It results from the from the Eq. 3 that in order to find the safety strategy for STRP directly 
we need to compute the value )(),(ˆmax * βTβαT

α
= for any given strategy β . Similarly, to 

obtain the safety strategy for RPTTL on the base on its definition given by Eq. 4 we should 
have the values ),(min)( )0,1()0,1(

* βαTβT
α

= for each strategy β of the decision maker. 

However, it is well-known fact that the two values can be obtained in easiest way by taking 
the maximum (or minimum) over the finite set of the states of nature S={s1, s2,…,sm}, i.e. 
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The values ),(ˆ βT is  and ),()0,1( βT is  can be obtained from the formulae 
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random variables. Let us assume that the random variables ijT  have known distribution. In 
such a case we propose to make use of the Monte Carlo method. According to the given 
distributions of the entries we generate N independent realizations of the matrices T and 
T(1,0), where N is a sufficiently large number. Then we estimate (as averages) the values 

),(ˆ βT is  and ),()0,1( βT is  and consequently for any given strategy β we find the 

approximation of the values )(* βT  and )()0,1(
* βT which are necessary for further 

optimization. 
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3.2. Algorithm of the evolutionary search with soft selection  
 
First let us note that now the problem of computing the safety strategy for STRP is  the 
problem of minimization of )(* βT  whilst the  problem of computing the safety strategy for 

RPTTL is  the problem of maximization of )()0,1(
* βT . However the first one can be 

equivalently treated as a problem of maximization of )(* βT− . The values of )(* βT−  and 

)()0,1(
* βT will be called a fitness of the strategy β in the game STRP and RPTTL, 

respectively. Thus we can say that we need a procedure which allows us to find the global 
maximum of the fitness over the set of all mixed strategies of the decision maker. Here we 
adopt algorithm called the evolutionary search with soft selection, see [4., 10.]. The 
algorithm implemented in our simulations can be described as follows: 
 

Step 1. Set the initial population of k vectors βi ε Rn, i=1, 2, …, k (it is so called initial 
parent population). 
Step 2. Assign to each vector βi  ,i=1, …, k, its fitness i.e. the value )(* βT−  or )()0,1( βT , 
dependently on the game. 
Step 3. Select parent β by soft selection i.e. with probability proportional to the its fitness 
(the better the fitness the higher the probability of the choice). 
Step 4.Create a descendant w from the chosen parent β  by its random mutation: w=β +Z, 
where Z is a random n-dimensional vector with coefficients having expected value equal 
to zero and given standard deviation σz. 
Step 5. Repeat steps 3 and 4 for k times to create a new k-element generation of n-
dimensional vectors (descendants). 
Step 6. Replace the parent population with the descendant population. 
Step 7.  Repeat the second to sixth steps for NG times, where NG is a sufficiently large 
number. 
Step 8. Return the last generation and the fitness of its elements. 

 
The tasks of finding the safety strategies for the problems STRP and RPTTL are obviously 
different, so the above described procedure is realized for the two games separately.  
In the next section we present some numerical examples illustrating the proposed idea. 
 
4. Numerical examples and final remarks 
 
Let us consider a problem where the matrix T is given as follows: 

 

25 30 35 40 30
25 30 35 60 80
65 60 55 50 30
35 50 45 60 50

T = 35 40 55 60 30
70 50 55 55 30
30 45 40 45 30
30 35 40 55 40
80 35 40 45 30
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The matrix describes a situation when the decision maker has five different routes to choose 
between and he distinguishes nine significantly different states of the traffic flow which may 
occur during the travel and which influence the travel time. The states may be connected 
with the car accidents (their frequency) or some cultural or social events which are 
unpredictable to the decision maker and have influence on the traffic. In the matrix the travel 
time is given in minutes. Such a game was considered and solved in [7.]. The minimax 

mixed strategy is )
7
2,0,

7
5,0,0(* =β  and the upper value in this game equals V*=335/7≅ 47,9 

min. The safety strategy can be interpreted as follows: the third route should be chosen with 
the probability 5/7, the fifth with probability 2/7 and remaining routes should be omitted.  
Now let us assume that the route times are random variables and that the entries of the above 
matrix T represent the mean values of the route times in particular situations. More precisely 
we assume that the route times in particular case are given as ijij ZT +  where Zij are random 

variables with expected values equal to zero and given finite standard deviation σij. The 
quantities Zij may be interpreted as random disturbances of the average route time. Various 
designs of the problems are characterized by the classes the distribution of the disturbances 
belong to and their parameters. In our examples we analyze two distribution classes: normal 
distribution and translated exponential distribution. With the help of the above described 
simulation procedures we solve problems for various values of the standard deviation σij. In 
Table 1. we present the results obtained for the normal distribution. The first column 
contains the values of the parameter w which equals the ratio σij/Tij and tell us how big is the 
standard deviation in comparison with the expected route time (in percents). The second 
column contains the fitness of the above determined strategy β* which is optimal in 
deterministic case. The symbol βMM denote the optimal (minimax) strategy found in our 
simulations for a particular design of the problem. 
 

Table 1. Safety (minimax) strategies for STRP - normal disturbance 

w *)(* βT  βMM )(*
MMβT  

10% 47 min 54 sec (0.00, 0.02, 0.65, 0.04, 0.29) 47 min 45 sec 
30% 47 min 24 sec (0.02, 0.08, 0.55, 0.02, 0.33) 47 min 15 sec 
50% 49 min 42 sec (0.09, 0.09, 0.51, 0.01, 0.30) 47 min 3 sec 
70% 50 min 54 sec (0.08, 0.05, 0.50, 0.00, 0.37) 45 min 42 sec  

 
Table 2. contains the same information as Table 1. but the results were obtained for the case 
of translated exponential distribution. 
 

Table 2. Safety (minimax) strategies for STRP - translated exponential 
disturbance 

w *)(* βT  βMM )(*
MMβT  

10% 47 min 54 sec (0.00, 0.02, 0.65, 0.04, 0.29) 47 min 42 sec 
30% 49 min 31 sec (0.00, 0.09, 0.68, 0.00, 0.23) 47 min 14 sec 
50% 48 min 20 sec (0.00, 0.07, 0.60, 0.03, 0.30) 46 min 42 sec 
70% 48 min 25 sec (0.04, 0.01, 0.67, 0.0, 0.28) 45 min 54 sec  

 
First of all we can notice that the strategy β*, optimal in deterministic case is no longer 
optimal when we assume the random travel times. However, it can also be seen that when the 
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disturbances have relatively small standard deviation (w=10% or w=30%) than its 
performance is still quite good. It is understood, because in such cases the expected values 
given in the game matrix are good approximations of real route times. We can also see that 
the usage of the procedures based on the Monte Carlo simulations results in strategies which 
are always better than the strategy β*. The differences in performance of the strategies are 
bigger in the case of asymmetric distribution of disturbances, i.e. for the translated 
exponential one - results presented in Table 2. 
Now let us consider our example in the RPTTL framework. Let us assume that a travel time 
limit t* is given. It reflects the situation where  the distance must be covered in a period of 
time that does not exceed the limit and if so, it is of no importance how many minutes it will 
take. Let us assume that t*=50. The solution in the deterministic case was presented in [7.]. 

The safety mixed strategy in this case is )0,
2
1,0,

2
1,0()0,1( =β . The lower value for this game 

is v*=1/2 . Now let us present the results for the random route time case. They are given in 
Tables 3. and 4. 
 

Table 3. Safety (maximin) strategies for RPTTL  - normal 
disturbance 

w *)()0,1(
* βT  β(1,0) )( )0,1()0,1(

* βT  

10% 0.28 (0.07, 0.18, 0.33, 0.00, 0.42) 0.55 
30% 0.34 (0.07, 0.18, 0.26, 0.18, 0.31) 0.59 
50% 0.41 (0.15, 0.10, 0.30, 0.12, 0.33) 0.59 
70% 0.45 (0.02, 0.49, 0.00, 0.49, 0.00) 0.55 

 
Table 4. Safety (maximin) strategies for RPTTL - translated 
exponential disturbance 

w *)()0,1(
* βT  β(1,0) )( )0,1()0,1(

* βT  

10% 0.32 (0.24, 0.00, 0.14, 0.26, 0.36) 0.50 
30% 0.45 (0.05, 0.41, 0.16, 0.15, 0.23) 0.62 
50% 0.52 (0.22, 0.10 0.30, 0.20, 0.18) 0.64 
70% 0.59 (0.37, 0.27, 0.11, 0.15, 0.10) 0.67 

 
The above results show again, that strategy which is optimal in deterministic case has quite 
poor performance in the case of random routing times. In the routing problem with travel 
time limit the probabilities of success may be significantly bigger - even almost two times -
when we use strategies found with the help of Monte Carlo simulations.  
In real world application the number of possible routes may be larger as well as the number 
of states of the nature. Also the distributions of routing times may belong to other 
distribution classes and have more sophisticated nature.  However in all these situations it is 
possible to obtain a good solution to the routing problems with the help of proposed a 
approach based on global optimization procedure combined with Monte Carlo simulations. 
 
References 
 
[1.] BELL, M. G. H.: Games, Heuristics, and Risk Averseness in Vehicle Routing 

Problems, Journal of Urban Planning and Development, Vol. 130, No. 1, 2004, pp. 
37-41 



60 
 

[2.] CHARNES, A., COOPER, W. W.: Chance-constrained programming, 
Management Sciences 6, 1959,73–80. 

[3.] ESTÉVEZ-FERNÁNDEZ, A., BORM,  P., MEERTENS, M., REIJNIERSE H.: On 
the core of routing games with revenues, International Journal of Game Theory; 
2009, Vol. 38 Issue 2, p291-304. 

[4.] GALAR, R.: Soft selection in random global adaptation in Rn: A biocybernetic 
model of development, Technical University Press, Wrocław, 1990, (in Polish). 

[5.] GOLDEN, B., RAGHAVAN, S., WASIL, E. (Eds.): The Vehicle Routing Problem: 
Latest Advances and New Challenges, Operations Research/Computer Science 
Interfaces Series , Vol. 43, Springer US, 2008 

[6.] GRZYBOWSKI, A. Z.: Monte Carlo optimization procedure for chance 
constrained programming - simulation study results, Scientific Research of the 
Institute of Mathematics and Computer  Science, 1(8), 2009, 39-46. 

[7.] GRZYBOWSKI, A. Z.: A note on a single vehicle and one destination routing 
problem and its game-theoretic models, Advanced Logistics Systems vol. 3 , 2009 ,  
71-76 

[8.] KOT S., ŚLUSARCZYK B.: Process Simulation in Supply Chain Using Logware 
Software, Annales Universitas Apulensis Ser.Oeconomica Vol.2 nr 11, 2009 

[9.] MORRIS, P.: Introduction to game theory, Spriger-Verlag 1994. 
[10.] HU, H., GUOQINGRAN, LIAO L., WU, Y.: The application of game theory in the 

vehicle routing problem in logistics distribution system,[in:] Proceedings of IEEE 
International Conference on Automation and Logistics, 2008, p. 963-966. 

[11.] OBUCHOWICZ, A., KORBICZ , J.: Global optimization via evolutionary search 
with soft selection, Manuscript, available: http://www.mat.univie.ac.at/ 
~neum/glopt/mss/gloptpapers.html 

[12.] RUSZCZYNSKI, A., SHAPIRO, A.: Stochastic Programming. Handbooks in 
Operations Research and Management Science, Vol. 10. Elsevier, Amsterdam, 2003. 

 


